Many students persistently misinterpret histograms. This calls for closer inspection of students’ strategies when interpreting histograms and case-value plots (which look similar but are diferent). Using students’ gaze data, we ask: How and how well do upper secondary pre-university school students estimate and compare arithmetic means of histograms and case-value plots? We designed four item types: two requiring mean estimation and two requiring means comparison. Analysis of gaze data of 50 students (15–19 years old) solving these items was triangulated with data from cued recall. We found five strategies. Two hypothesized most common strategies for estimating means were confirmed: a strategy associated with horizontal gazes and a strategy associated with vertical gazes. A third, new, count-and-compute strategy was found. Two more strategies emerged for comparing means that take specific features of the distribution into account. In about half of the histogram tasks, students used correct strategies. Surprisingly, when comparing two case-value plots, some students used distribution features that are only relevant for histograms, such as symmetry. As several incorrect strategies related to how and where the data and the distribution of these data are depicted in histograms, future interventions should aim at supporting students in understanding these concepts in histograms. A methodological advantage of eye-tracking data collection is that it reveals more details about students’ problem-solving processes than thinking-aloud protocols. We speculate that spatial gaze data can be re-used to substantiate ideas about the sensorimotor origin of learning mathematics.
LINK
The purpose of this study was to provide more insight into how the physical education (PE) context can be better tailored to the diverse motivational demands of secondary school students. Therefore, we examined how different constructs of student motivation in the context of PE combine into distinct motivational profiles, aiming to unveil motivational similarities and differences between students’ PE experiences. Participants were 2,562 Dutch secondary school students, aged 12–18, from 24 different schools. Students responded to questionnaires assessing their perception of psychological need satisfaction and frustration, and perceived mastery and performance climate in PE. In order to interpret the emerging profiles additional variables were assessed (i.e. demographic, motivational and PE-related variables). Two-step cluster analysis identified three meaningful profiles labelled as negative perceivers, moderate perceivers and positive perceivers. These three profiles differed significantly with regard to perceived psychological need satisfaction and frustration and their perception of the motivational climate. This study demonstrates that students can be grouped in distinct profiles based on their perceptions of the motivational PE environment. Consequently, the insights obtained could assist PE teachers in designing instructional strategies that target students’ differential motivational needs.
Introduction: Youth activity guideline compliance is generally low across most western countries and Dutch youth are no exception to this. Thirty-two percent of 4-11 year old boys and girls, and 15% of 12-17 year olds are currently meeting the physical activity (PA) guideline recommendations of one hour of daily moderate-to-vigorous PA (MVPA) (Hildebrandt, Ooijendijk, & Hopman Rock, 2008). Physical education (PE) has been attributed an important role in providing young people with physical activity (Kahn, et al., 2002). If sufficiently active, PE lessons could contribute to physical activity levels in youth. Therefore, the purpose of this study was to determine the overall intensity of Dutch primary and secondary school physical education (PE) lessons and the influence of various lesson characteristics on these intensity levels. Methods: Heart rates were measured using the Polar Team System in a nationally distributed sample of 913 students in 40 schools (20 primary schools and 20 secondary schools) in the Netherlands. A total of 106 lessons were assessed, with 10 students per class (5 boys and 5 girls) wearing a heart rate monitor for the duration of their PE class. Teachers were asked not to deviate from their regular PE program and to carry out their lessons as they had planned. None of the lessons had a specifically planned physical activity intensity focus. Results: Overall percentages lesson time in MVPA were 46.7% and 40.1% during primary school and secondary school PE respectively. Primary school students engaged in significantly more MVPA than did secondary school students (t (890) = 4.635, p<.001). Furthermore, results indicated a sharp decline in girls' PE intensity levels in secondary school, where boys were more active than girls (F (1,912) = 9,58, p<.01). Subsequent analyses of lesson content in secondary school students indicated that girls were less active during teamgames, but not during individual activities or lessons with a mixed subject (both teamgames and individual activities) (45.7% vs. 34.7% F (3,451) = 16.31, p<.001, figure 1). Discussion: Our results show that one PE lesson roughly accounts for one-third of the daily amount of physical activity as prescribed by activity guidelines. Furthermore, previous research has shown that by including lesson intensity as an additional lesson goal it is relatively simple to increase lesson intensity (Verstraete, Cardon, De Clercq, & De Bourdeaudhuij, 2007). Therefore, increasing lesson intensity combined with increasing the number of weekly PE lessons seems an effective strategy to increase youth physical activity through PE. However, given the curricular and time constraints in most schools, PE should not be seen as a stand-alone solution for combating inactivity. Combined with other school-based PA opportunities (active transport, active breaks) however, PE could make a meaningful contribution to daily PA in youth. Finally, the high prevalence of coeducational teamgames (61% of all lessons) in the Dutch secondary school PE curricula might prevent girls from attaining similar physical activity levels to boys during PE. Therefore, more research is needed on maximising secondary school girls' participation during teamgames.
CRYPTOPOLIS is a project supported by EU which focuses on the financial management knowledge of teachers and the emerging field of risk management and risk analysis of cryptocurrencies. Cryptocurrency has shown to be a vital and rapidly growing component in today’s digital economy therefore there is a need to include not just financial but also crypto literacy into the schools. Beside multiple investors and traders the market is attracting an increasing number of young individuals, viewing it as an easy way to make money. A large pool of teenagers and young adults want to hop on this train, but a lack of cryptocurrency literacy, as well as financial literacy in general amongst youth, together with their inexperience with investing makes them even more vulnerable to an already high-risk investment.Therefore, we aim to increase the capacity and readiness of secondary schools and higher educational institutions to manage an effective shift towards digital education in the field of crypto and financial literacy. The project will develop the purposeful use of digital technologies in financial and crypto education for teaching, learning, assessment and engagement.