ABSTRACT This study investigates how perceptions of radicalisation and co-occurring mental health issues differ between mental health care and the security domain, and how these perceptions affect intersectoral collaboration. It is generally thought that intersectoral collaboration is a useful strategy for preventing radicalisation and terrorism, especially when it concerns radicalised persons with mental health issues. It is not clear, however, what perceptions professionals have of radicalisation and collaboration with other disciplines. Data was obtained from focus groups and individual interviews with practitioners and trainers from mental health care and the security domain in the Netherlands. The results show a lack of knowledge about radicalisation in mental health care, whereas in the security domain, there is little understanding of mental health issues. This leads to a mad-bad dichotomy which has a negative effect on collaboration and risk management. Improvement of the intersectoral collaboration by cross-domain familiarization, and strengthening of trust and mutual understanding, should begin with the basic training of professionals in both domains. The Care and Safety Houses in the Netherlands offer a sound base for intersectoral collaboration. Future professionals from different domains ought to be familiarized with each other’s possibilities, limitations, tasks, and roles.
Computer security incident response teams (CSIRTs) respond to a computer security incident when the need arises. Failure of these teams can have far-reaching effects for the economy and national security. CSIRTs often have to work on an ad hoc basis, in close cooperation with other teams, and in time constrained environments. It could be argued that under these working conditions CSIRTs would be likely to encounter problems. A needs assessment was done to see to which extent this argument holds true. We constructed an incident response needs model to assist in identifying areas that require improvement. We envisioned a model consisting of four assessment categories: Organization, Team, Individual and Instrumental. Central to this is the idea that both problems and needs can have an organizational, team, individual, or technical origin or a combination of these levels. To gather data we conducted a literature review. This resulted in a comprehensive list of challenges and needs that could hinder or improve, respectively, the performance of CSIRTs. Then, semi-structured in depth interviews were held with team coordinators and team members of five public and private sector Dutch CSIRTs to ground these findings in practice and to identify gaps between current and desired incident handling practices. This paper presents the findings of our needs assessment and ends with a discussion of potential solutions to problems with performance in incident response. https://doi.org/10.3389/fpsyg.2017.02179 LinkedIn: https://www.linkedin.com/in/rickvanderkleij1/
MULTIFILE
Cybersecurity is meer dan alleen het nemen van technische maatregelen. En alhoewel gebruikers ten onrechte vaak alleen worden aangemerkt als ‘de zwakke schakel’ binnen die cybersecurity, moet een deel van de maatregelen zich toch echt wel richten op deze groep. Gebruikers gedragen zich immers soms bewust of onbewust onveilig: - ze klikken op hyperlinks als ze dat niet moeten doen; - reageren op een phishingmail; - gebruiken zwakke wachtwoorden; - hergebruiken wachtwoorden; - melden incidenten niet; - geven (te) veel gegevens prijs van zichzelf op social media; - maken niet consequent back-ups van hun data. Sinds jaar en dag lijken organisaties ‘awareness’ te zien als de sleutel om van gebruikers iets minder de zwakke schakel te maken. De gedachte daarachter is kortgezegd dat gebruikers zich ‘beter’ gaan gedragen als we ze voeden met informatie over dreigingen, goed en fout gedrag en het cybersecurity-beleid. Het is inmiddels echter wel duidelijk dat een beleid dat alleen gericht is op ‘awareness’ niet gaatzorgen voor het gewenste effect. Onderzoek toont bijvoorbeeld aan dat anti-phishingcampagnes, waar nepphishingmails worden verstuurd, niet heel lang beklijven. Cybersecuritybedrijven geven dan ook steeds vaker aan dat het niet alleen gaat om het verhogen van kennis en bewustwording, maar ook om andere aspecten die gedrag lijken te beïnvloeden. Recent wetenschappelijk experimenteel onderzoek laat zelfs zien dat het hebben van meer kennis kan leiden tot onveiliger gedrag: gebruikers die (een beetje) meer weten, gedragen zich nog onveiliger. Mogelijk komt dat doordat die groep zichzelf overschat en daardoor ten onrechte grotere risico’s durft te nemen. We moeten dus verder komen dan alleen awareness. Het lab observeert dat er twee grote vraagstukken spelen. 1. Wat moeten we dan verder nog doen? Het is duidelijk dat er geen simpele oplossing is voor het bevorderen van veilig cybergedrag. Toch is het goed om nieuwe oplossingsrichtingen te onderzoeken die richting geven aan het verbeteren van cyberveilig gedrag. 2. Hoe zorgen we ervoor dat organisaties daadwerkelijk verder gaan dan alleen het creëren van meer awareness? Individuele organisaties hebben lang niet altijd de kennis en kunde om dit zelf te doen. Moet de overheid dit stimuleren? Zo ja, hoe dan? Kan het aan de markt zelf (lees: cybersecurity bedrijven) overgelaten worden? Wat kunnen we leren over het stimuleren van effectieve gedragsinterventies binnen andere vakgebieden? https://nl.linkedin.com/in/rutgerleukfeldt
MULTIFILE
Despite the benefits of the widespread deployment of diverse Internet-enabled devices such as IP cameras and smart home appliances - the so-called Internet of Things (IoT) has amplified the attack surface that is being leveraged by cyber criminals. While manufacturers and vendors keep deploying new products, infected devices can be counted in the millions and spreading at an alarming rate all over consumer and business networks. The objective of this project is twofold: (i) to explain the causes behind these infections and the inherent insecurity of the IoT paradigm by exploring innovative data analytics as applied to raw cyber security data; and (ii) to promote effective remediation mechanisms that mitigate the threat of the currently vulnerable and infected IoT devices. By performing large-scale passive and active measurements, this project will allow the characterization and attribution of compromise IoT devices. Understanding the type of devices that are getting compromised and the reasons behind the attacker’s intention is essential to design effective countermeasures. This project will build on the state of the art in information theoretic data mining (e.g., using the minimum description length and maximum entropy principles), statistical pattern mining, and interactive data exploration and analytics to create a casual model that allows explaining the attacker’s tactics and techniques. The project will research formal correlation methods rooted in stochastic data assemblies between IoT-relevant measurements and IoT malware binaries as captured by an IoT-specific honeypot to aid in the attribution and thus the remediation objective. Research outcomes of this project will benefit society in addressing important IoT security problems before manufacturers saturate the market with ostensibly useful and innovative gadgets that lack sufficient security features, thus being vulnerable to attacks and malware infestations, which can turn them into rogue agents. However, the insights gained will not be limited to the attacker behavior and attribution, but also to the remediation of the infected devices. Based on a casual model and output of the correlation analyses, this project will follow an innovative approach to understand the remediation impact of malware notifications by conducting a longitudinal quasi-experimental analysis. The quasi-experimental analyses will examine remediation rates of infected/vulnerable IoT devices in order to make better inferences about the impact of the characteristics of the notification and infected user’s reaction. The research will provide new perspectives, information, insights, and approaches to vulnerability and malware notifications that differ from the previous reliance on models calibrated with cross-sectional analysis. This project will enable more robust use of longitudinal estimates based on documented remediation change. Project results and methods will enhance the capacity of Internet intermediaries (e.g., ISPs and hosting providers) to better handle abuse/vulnerability reporting which in turn will serve as a preemptive countermeasure. The data and methods will allow to investigate the behavior of infected individuals and firms at a microscopic scale and reveal the causal relations among infections, human factor and remediation.