BACKGROUND: Although physical activity is beneficial for Parkinson's disease (PD) patients, many do not meet the recommended levels. The range of physical activity among sedentary PD patients is unknown, as are factors that determine this variability. Hence, we aimed to (1) assess daily physical activity in self-identified sedentary PD patients; (2) compare this with criteria of a daily physical activity guideline; and (3) identify determinants of daily physical activity. METHODS: Daily physical activity of 586 self-identified sedentary PD patients was measured with a tri-axial accelerometer for seven consecutive days. Physical fitness and demographic, disease-specific, and psychological characteristics were assessed. Daily physical activity was compared with the 30-min activity guideline. A linear mixed-effects model was estimated to identify determinants of daily physical activity. RESULTS: Accelerometer data of 467 patients who fulfilled all criteria revealed that >98% of their day was spent on sedentary to light-intensity activities. Eighty-two percent of the participants were 'physically inactive' (0 days/week of 30-min activity); 17% were 'semi-active' (1-4 days/week of 30-min activity). Age, gender, physical fitness, and scores on the Unified Parkinson's Disease Rating Scale explained 69% of the variability in daily physical activity. CONCLUSIONS: Performance-based measurements confirmed that most self-identified sedentary PD patients are 'physically inactive'. However, the variance in daily physical activity across subjects was considerable. Higher age, being female, and lower physical capacity were the most important determinants of reduced daily physical activity. Future therapeutic interventions should aim to improve daily physical activity in these high-risk patients, focusing specifically on modifiable risk factors.
LINK
Objective The purpose of this study was to investigate the relationship between body mass index (BMI) class and physical activity and sedentary behavior in patients with acute coronary syndrome (ACS) during cardiac rehabilitation (CR). Methods This study was a secondary analysis of the OPTICARE trial. Physical activity and sedentary behavior were measured in participants with ACS (n = 359) using actigraphy at baseline, directly after completion of a multidisciplinary 12-week exercise-based CR program and 9 months thereafter. Outcome measures were step count and duration of time (percentage of wear time) spent in light physical activity, moderate-to-vigorous physical activity, and sedentary behavior. Participants were classified as normal weight (BMI = 18.5–24.99 kg/m2; n = 82), overweight (BMI = 25.0–29.99 kg/m2; n = 182), or obese (BMI ≥ 30.0 kg/m2; n = 95). Linear mixed-effects models were applied to study the relationship between BMI class and physical activity and sedentary behavior. Results At the start of CR, compared with participants with normal weight, participants with obesity made on average 1.11 steps fewer per minute (952 steps/d), spent 2.9% (25 min/d) less time in light physical activity, and spent 3.31% (28 min/d) more time in sedentary behavior. Participants of all BMI classes improved their physical activity and sedentary behavior levels similarly during CR, and these improvements were maintained after completion of CR. Conclusion Participants with ACS who had obesity started CR with a less favorable physical activity and sedentary behavior profile than that of participants with normal weight. Because all BMI classes showed similar improvement during CR, this deficit was preserved. Impact This study indicates that reconsideration of the CR program in the Netherlands for patients with ACS and obesity is warranted, and development of more inclusive interventions for specific populations is needed. A new program for people with obesity should include added counseling on increasing physical activity and preventing sedentary behavior to facilitate weight loss and reduce mortality risk. Lay Summary People with ACS who have obesity are less active and sit more than individuals with normal weight, both during and after CR. This study suggests that CR needs to be changed to help individuals increase their physical activity to help them lose weight and reduce their risk of death.
Background: There is increasing interest in the role that technology can play in improving the vitality of knowledge workers. A promising and widely adopted strategy to attain this goal is to reduce sedentary behavior (SB) and increase physical activity (PA). In this paper, we review the state-of-the-art SB and PA interventions using technology in the office environment. By scoping the existing landscape, we identified current gaps and underexplored possibilities. We discuss opportunities for future development and research on SB and PA interventions using technology. Methods: A systematic search was conducted in the Association for Computing Machinery digital library, the interdisciplinary library Scopus, and the Institute of Electrical and Electronics Engineers Xplore Digital Library to locate peer-reviewed scientific articles detailing SB and PA technology interventions in office environments between 2009 and 2019. Results: The initial search identified 1130 articles, of which 45 studies were included in the analysis. Our scoping review focused on the technologies supporting the interventions, which were coded using a grounded approach. Conclusion: Our findings showed that current SB and PA interventions using technology provide limited possibilities for physically active ways of working as opposed to the common strategy of prompting breaks. Interventions are also often offered as additional systems or services, rather than integrated into existing office infrastructures. With this work, we have mapped different types of interventions and provide an increased understanding of the opportunities for future multidisciplinary development and research of technologies to address sedentary behavior and physical activity in the office context
The main objective of DEDIPAC is to understand the determinants of dietary, physical activity and sedentary behaviours and to translate this knowledge into a more effective promotion of a healthy diet and physical activity.The DEDIPAC KH is a multidisciplinary consortium of scientists from 68 research centers in 12 countries across Europe.
The main objective of DEDIPAC is to understand the determinants of dietary, physical activity and sedentary behaviours and to translate this knowledge into a more effective promotion of a healthy diet and physical activity.The DEDIPAC KH is a multidisciplinary consortium of scientists from 68 research centers in 12 countries across Europe.