In the life of flowering plants, seed germination is a critical step to ensure survival into the next generation. Generally the seed prior to germination has been in a dormant state with a low rate of metabolism. In the transition from a dormant seed to a germinating seed, various epigenetic mechanisms play a regulatory role. Here, we demonstrate that the over-expression of chromatin remodeling ATPase genes (AtCHR12 or AtCHR23) reduced the frequency of seed germination in Arabidopsis thaliana up to 30% relative to the wild-type seeds. On the other hand, single loss-of-function mutations of the two genes did not affect seed germination. The reduction of germination in over-expressing mutants was more pronounced in stress conditions (salt or high temperature), showing the impact of the environment. Reduced germinations upon over-expression coincided with increased transcript levels of seed maturation genes and with reduced degradation of their mRNAs stored in dry seeds. Our results indicate that repression of AtCHR12/23 gene expression in germinating wild-type Arabidopsis seeds is required for full germination. This establishes a functional link between chromatin modifiers and regulatory networks towards seed maturation and germination.
DOCUMENT
Background: Profiling the plant root architecture is vital for selecting resilient crops that can efficiently take up water and nutrients. The high-performance imaging tools available to study root-growth dynamics with the optimal resolution are costly and stationary. In addition, performing nondestructive high-throughput phenotyping to extract the structural and morphological features of roots remains challenging. Results: We developed the MultipleXLab: a modular, mobile, and cost-effective setup to tackle these limitations. The system can continuously monitor thousands of seeds from germination to root development based on a conventional camera attached to a motorized multiaxis-rotational stage and custom-built 3D-printed plate holder with integrated light-emitting diode lighting. We also developed an image segmentation model based on deep learning that allows the users to analyze the data automatically. We tested the MultipleXLab to monitor seed germination and root growth of Arabidopsis developmental, cell cycle, and auxin transport mutants non-invasively at high-throughput and showed that the system provides robust data and allows precise evaluation of germination index and hourly growth rate between mutants. Conclusion: MultipleXLab provides a flexible and user-friendly root phenotyping platform that is an attractive mobile alternative to high-end imaging platforms and stationary growth chambers. It can be used in numerous applications by plant biologists, the seed industry, crop scientists, and breeding companies.
LINK
Worldwide, pupils with migrant backgrounds do not participate in school STEM subjects as successfully as their peers. Migrant pupils’ subject-specific language proficiency lags behind, which hinders participation and learning. Primary teachers experience difficulty in teaching STEM as well as promoting required language development. This study investigates how a professional development program (PDP) focusing on inclusive STEM teaching can promote teacher learning of language-promoting strategies (promoting interaction, scaffolding language and using multilingual resources). Participants were five case study teachers in multilingual schools in the Netherlands (N = 2), Sweden (N = 1) and Norway (N = 2), who taught in primary classrooms with migrant pupils. The PDP focused on three STEM units (sound, maintenance, plant growth) and language-promoting strategies. To trace teachers’ learning, three interviews were conducted with each of the five teachers (one after each unit). The teachers also filled in digital logs (one after each unit). The interviews showed positive changes in teachers’ awareness, beliefs and attitudes towards language-supporting strategies. However, changes in practice and intentions for practice were reported to a lesser extent. This study shows that a PDP can be an effective starting point for teacher learning regarding inclusive STEM teaching. It also illuminates possible enablers (e.g., fostering language awareness) or hinderers (e.g., teachers’ limited STEM knowledge) to be considered in future PDP design.
LINK