Kahramanmaraş Earthquake Sequence of 6th of February is the deadliest earthquake that happened in Turkey in the era of instrumental seismology, claiming more than 55 thousand lives and leaving torn down cities and towns behind. More than 450 km long lateral strike-slip fault ruptured during these catastrophic earthquakes. As a result, more than 38 thousand buildings collapsed causing life losses. Considering that the large share of the Turkish building stock consists of RC buildings, the vulnerable RC building stock is the main responsible for this picture. Deficiencies of the Turkish RC building stock are well known since they manifested themselves several times in the past earthquakes. However, considering the improvements in the seismic codes and the seismic hazard maps achieved in the last two decades, the widespread collapse of buildings constructed after year 2000 was rather unexpected. Some of the observed structural damage patterns are similar to those observed also in the pre-2000 buildings in recent earthquakes, however, some other types of damages, such as out-of-plane bending and shear failures or shear-friction capacity failure of RC walls, brittle fracture and bond-slip failure of reinforcement, tension failure of beams and slabs are usually not witnessed. This paper presents a carefully selected set of examples comparing the pre-2000 and post-2000 building damages and collapses, also referring to a detailed summary and comparison of the code developments in Turkey.
DOCUMENT
''This research aims to address a post-earthquake urgent strengthening measure to enhance the residual seismic capacity of earthquake-damaged reinforced concrete wall structures with coupling beams. The study consists of a series of tests on half-scale prototype coupling beams with various detailing options, including confined with reduced confinement, partially confined, and unconfined bundles, under cyclic loading conditions. The methodology employed involved subjecting the specimens to displacement-controlled reversal tests, and carefully monitoring their response using strain gauges and potentiometers. The main results obtained reveal that GFRP wrapping significantly enhances the seismic performance of earthquake-damaged coupling beams, even in cases where specimens experienced strength loss and main reinforcement rupture. The strengthened beams exhibit commendable ductility, maintaining high levels of deformation capacity, and satisfying the requirements of relevant seismic design codes. The significance of the study lies in providing valuable insights into the behavior and performance of damaged coupling beams and assessing the effectiveness of GFRP wrapping as a rapid and practical post-earthquake strengthening technique. The findings can be particularly useful for developing urgent post-earthquake strengthening strategies for high-rise buildings with structural walls. The method may be particularly useful for mitigating potential further damage in aftershocks and eventual collapse. In conclusion, this study represents a significant advancement in understanding the post-earthquake behaviors of coupling beams and provides valuable guidance for practitioners in making informed decisions regarding post-earthquake strengthening projects. The findings contribute to the overall safety and resilience of structures in earthquake-prone regions.''
DOCUMENT
Masonry structures comprise a significant portion of the historical building stock all over the world. Previousstudies have clearly pointed out that unreinforced masonry buildings are vulnerable against extreme loadingconditions, such as seismic actions. Therefore, strengthening is inevitable in most cases for historical masonry towithstand severe loads. In this paper, the efficiency of fabric reinforced cementitious matrix is investigatedexperimentally by using diagonal tension tests. Fourteen wallets with a nominal size of 750x750x235 mm wereproduced with using solid clay bricks and a low-strength mortar. The bricks were collected from the structuralwalls of an early-20th century building under restoration. The low-strength mortar represents the historicalmortar commonly used in similar historical brick masonry buildings located in Istanbul, Turkey. By testing thespecimens under monotonic diagonal compression loads, the effects of different types of plasters on the walletsurface, varying types of fibers used in textile reinforcement and anchors used for the connection between FRCMand substrate are investigated. Although the wallet samples have inherent shortcomings in representing overallcomponent response accurately, still the qualitative findings are enlightening the effectiveness of the FRCMsystem by increasing shear strength, stiffness (shear modulus) and dissipated energy of the masonry wallets. Thestrengthened specimens were failed due to shear sliding along a bed joint and/or by a stair-shaped separationwhile the refence specimens were failed due to the splitting of the specimen into two parts in the stair-steppedshape and a slipping through a bed joint.
LINK