Chronic diseases represent a significant burden for the society and health systems; addressing this burden is a key goal of the European Union policy. Health and other professionals are expected to deliver behaviour change support to persons with chronic disease. A skill gap in behaviour change support has been identified, and there is room for improvement. Train4Health is a strategic partnership involving seven European Institutions in five countries, which seeks to improve behaviour change support competencies for the self-management of chronic disease. The project envisages a continuum in behaviour change support education, in which an interprofessional competency framework, relevant for those currently practising, guides the development of a learning outcomes-based curriculum and an educational package for future professionals (today’s undergraduate students).
DOCUMENT
Background: The aim of this study is to validate a newly developed nurses' self-efficacy sources inventory. We test the validity of a five-dimensional model of sources of self-efficacy, which we contrast with the traditional four-dimensional model based on Bandura's theoretical concepts. Methods: Confirmatory factor analysis was used in the development of the newly developed self-efficacy measure. Model fit was evaluated based upon commonly recommended goodness-of-fit indices, including the χ2 of the model fit, the Root Mean Square Error of approximation (RMSEA), the Tucker-Lewis Index (TLI), the Standardized Root Mean Square Residual (SRMR), and the Bayesian Information Criterion (BIC). Results: All 22 items of the newly developed five-factor sources of self-efficacy have high factor loadings (range .40-.80). Structural equation modeling showed that a five-factor model is favoured over the four-factor model. Conclusions and implications: Results of this study show that differentiation of the vicarious experience source into a peer- and expert based source reflects better how nursing students develop self-efficacy beliefs. This has implications for clinical learning environments: a better and differentiated use of self-efficacy sources can stimulate the professional development of nursing students.
DOCUMENT
We propose that writing can be employed to foster the kind of career learning required in the twenty-first century. The article offers insights into how writing exercises and approaches can be applied to help students construct their career stories in a way that allows them to engage in a dialogical learning process and work in a self-directed way. Creative, expressive and reflective writing practices are described and parallels are drawn between these and existing practices and theories in narrative career counselling. Key exercises in graduate courses for writing for personal development are discussed and a theoretical explanation is given as to why a particular order of approaches and exercises works best to promote career learning.
DOCUMENT
Traffic accidents are a severe public health problem worldwide, accounting for approximately 1.35 million deaths annually. Besides the loss of life, the social costs (accidents, congestion, and environmental damage) are significant. In the Netherlands, in 2018, these social costs were approximately € 28 billion, in which traffic accidents alone accounted for € 17 billion. Experts believe that Automated Driving Systems (ADS) can significantly reduce these traffic fatalities and injuries. For this reason, the European Union mandates several ADS in new vehicles from 2022 onwards. However, the utility of ADS still proves to present difficulties, and their acceptance among drivers is generally low. As of now, ADS only supports drivers within their pre-defined safety and comfort margins without considering individual drivers’ preferences, limiting ADS in behaving and interacting naturally with drivers and other road users. Thereby, drivers are susceptible to distraction (when out-of-the-loop), cannot monitor the traffic environment nor supervise the ADS adequately. These aspects induce the gap between drivers and ADS, raising doubts about ADS’ usefulness among drivers and, subsequently, affecting ADS acceptance and usage by drivers. To resolve this issue, the HUBRIS Phase-2 consortium of expert academic and industry partners aims at developing a self-learning high-level control system, namely, Human Counterpart, to bridge the gap between drivers and ADS. The central research question of this research is: How to develop and demonstrate a human counterpart system that can enable socially responsible human-like behaviour for automated driving systems? HUBRIS Phase-2 will result in the development of the human counterpart system to improve the trust and acceptance of drivers regarding ADS. In this RAAK-PRO project, the development of this system is validated in two use-cases: I. Highway: non-professional drivers; II. Distribution Centre: professional drivers.
Traffic accidents are a severe public health problem worldwide, accounting for approximately 1.35 million deaths annually. Besides the loss of life, the social costs (accidents, congestion, and environmental damage) are significant. In the Netherlands, in 2018, these social costs were approximately € 28 billion, in which traffic accidents alone accounted for € 17 billion. Experts believe that Automated Driving Systems (ADS) can significantly reduce these traffic fatalities and injuries. For this reason, the European Union mandates several ADS in new vehicles from 2022 onwards. However, the utility of ADS still proves to present difficulties, and their acceptance among drivers is generally low.As of now, ADS only supports drivers within their pre-defined safety and comfort margins without considering individual drivers’ preferences, limiting ADS in behaving and interacting naturally with drivers and other road users. Thereby, drivers are susceptible to distraction (when out-of-the-loop), cannot monitor the traffic environment nor supervise the ADS adequately. These aspects induce the gap between drivers and ADS, raising doubts about ADS’ usefulness among drivers and, subsequently, affecting ADS acceptance and usage by drivers.To resolve this issue, the HUBRIS Phase-2 consortium of expert academic and industry partners aims at developing a self-learning high-level control system, namely, Human Counterpart, to bridge the gap between drivers and ADS. The central research question of this research is:How to develop and demonstrate a human counterpart system that can enable socially responsible human-like behaviour for automated driving systems?HUBRIS Phase-2 will result in the development of the human counterpart system to improve the trust and acceptance of drivers regarding ADS. In this RAAK-PRO project, the development of this system is validated in two use-cases:I. Highway: non-professional drivers;II. Distribution Centre: professional drivers.Collaborative partners:Bielefeld University of Applied Sciences, Bricklog B.V., Goudappel B.V., HaskoningDHV Nederland B.V., Rhine-Waal University of Applied Sciences, Rijkswaterstaat, Saxion, Sencure B.V., Siemens Industry Software Netherlands B.V., Smits Opleidingen B.V., Stichting Innovatiecentrum Verkeer en Logistiek, TNO Den Haag, TU Delft, University of Twente, V-Tron B.V., XL Businesspark Twente.