Ambient activity monitoring systems produce large amounts of data, which can be used for health monitoring. The problem is that patterns in this data reflecting health status are not identified yet. In this paper the possibility is explored of predicting the functional health status (the motor score of AMPS = Assessment of Motor and Process Skills) of a person from data of binary ambient sensors. Data is collected of five independently living elderly people. Based on expert knowledge, features are extracted from the sensor data and several subsets are selected. We use standard linear regression and Gaussian processes for mapping the features to the functional status and predict the status of a test person using a leave-oneperson-out cross validation. The results show that Gaussian processes perform better than the linear regression model, and that both models perform better with the basic feature set than with location or transition based features. Some suggestions are provided for better feature extraction and selection for the purpose of health monitoring. These results indicate that automated functional health assessment is possible, but some challenges lie ahead. The most important challenge is eliciting expert knowledge and translating that into quantifiable features.
DOCUMENT
Sensor systems can be deployed in the homes of older adults living alone for functional health assessments. Their information is very useful for health care specialists. The problem lies in developing person independent models while facing a large variability in behavior. We address this problem by, first, proposing a new feature extraction method for data from ambient motion sensors. The method uses functional similarities between houses and daily structure to extract meaningful features. Second, we propose a change-based approach for analyzing data, taking difference scores of both the sensor features and health metrics. To evaluate our approach, experiments on longitudinal data were conducted, where the relationship between sensor data and health measurements was modeled with linear regression and (nonlinear) regression forests. These experiments show that the change-based approach yields better results and that the resulting models can be used as a reliable metric for (functional) health. In addition, feature analysis can help health care specialists understand relevant aspects of behavior. Prediction of health metrics is possible even with simple sensors. With such sensors, it is possible to detect problems and health decline in an early stage. This will have great impact on clinical practice.
DOCUMENT
Er zijn veel verschillende sensoren beschikbaar die gebruikt kunnen worden om data in te winnen. Daarnaast zijn er veel verschillende werkwijzen om aan de slag te gaan met sensoren. Om een gestandaardiseerde werkwijze op te stellen, is een groep 4e-jaars AGIS studenten van de HAS green academy in het kader van het SURF project SMART sensordata infrastructuur aan de slag gegaan met het proces omtrent het inwinnen van data met sensoren. Hier is een werkwijze uit komen rollen die voor iedereen en overal werkt. In deze handleiding wordt de werkwijze stap voor stap uitgelegd.
DOCUMENT
On April 16 and 17, 2020, the third edition of the Sensor data challenge was held by The Hague University of Applied Sciences, Statistics Netherlands, Utrecht University and the National Institute for Public Health and the Environment. The Sensor data challenge provides hardware (various sensors, raspberryPI) and software to teams with a mix of expertise in electronics, mechatronics, data science, user experience and industrial design. Teams need to design a tool and demonstrate its feasibility and relevance for one of the presented challenges. The third challenge had sensor measurements for living and working as the central theme. Winning solutions of the two previous editions have been the starting point for large-scale ongoing research projects. We like to present a brief summary of the solutions presented by the participating teams at the third challenge and offer the winning team the opportunity to share and discuss their ideas at the BigSurv20 with a larger audience.
VIDEO
Wat zijn belangrijke succesfactoren om onderzoek, onderwijs en ondernemen bij elkaar te brengen, zó dat 'het klikt'. De uitdaging voor de toekomst van bedrijven in de smart factoryligt bij data science: het omzetten van ruwe (sensor) data naar (zinnige) informatie en kennis, waarmee producten en diensten verbeterd kunnen worden. Tevens programma van het symposium t.g.l. inauguratie 3 december 2015
MULTIFILE
This paper describes the approach used to identify elderly people’s needs and attitudes towards applying ambient sensor systems for monitoring daily activities in the home. As elderly are typically unfamiliar with such ambient technology, interactive tools for explicating sensor monitoring –an interactive dollhouse and iPad applications for displaying live monitored sensor activity data– were developed and used for this study. Furthermore, four studies conducted by occupational therapists with more than 60 elderly participants –including questionnaires (n=41), interviews (n=6), user sessions (n=14) and field studies (n=2)– were conducted. The experiences from these studies suggest that this approach helped to democratically engage the elderly as end-user and identify acceptance issues.
DOCUMENT
Het project van Aeres Hogeschool Dronten heeft als doel om via het delen en analyseren van telersdata binnen een groep van dertien telers te komen tot nieuwe inzichten, betere bedrijfsvoering en efficiëntere ketens, gericht op economische en ecologische duurzaamheid. Hiervoor wordt een data-infrastructuur gerealiseerd waarmee telers gefaciliteerd worden in het verzamelen, delen en analyseren van data en toegang krijgen tot complexere analyse technieken. Het project beoogt een groep telers op te leiden om de infrastructuur en tools te gebruiken en gezamenlijk data te delen en te analyseren om de teelt te verbeteren. Aan het einde van het project worden concrete verbeteringen verwacht op het gebied van input en opbrengst in de aardappelteelt.Het project richtte zich op het onderzoeken van hoe data van agrarische ondernemers in Flevoland gebruikt en gedeeld kan worden om economische en ecologische verbeteringen te bereiken. De landbouwsector verzamelt steeds meer gegevens over variabelen die de groei en bewaring van gewassen beïnvloeden, waarmee de benadering van landbouw verduurzaamd kan worden. Echter, het gebruik van data staat nog in de kinderschoenen en beslissingen worden vaak genomen op basis van advisering van externe commerciële partijen. Het delen van data is ook nog gevoelige materie. Het project wil deze drempels verlagen door telers meer data onderling te laten uitwisselen en met partners in de keten.De data-infrastructuur wordt gerealiseerd voor een groep van 15-20 telers die bereid zijn teelt- en/of bewaarsturing te doen op basis van beschikbare object-specifieke en actuele data. De data kunnen met elkaar gedeeld worden en zo kunnen de bedrijven verbeterd worden. De telers krijgen via de infrastructuur toegang tot complexere analyse technieken. Het project is opgedeeld in drie groepen op basis van locatie in de provincie: een groep telers rond een pilot bedrijf in Dronten, een groep rond een pilot bedrijf in Swifterbant en een groep in de NOP.De drie pilot bedrijven hebben aan het begin van het project een inventarisatie gedaan op basis van een door Aeres opgestelde vragenlijst om inzicht te krijgen in de minimale beschikbare data voor deelname aan het project. De meeste gevraagde data zijn reeds beschikbaar, behalve bij het pilot bedrijf in de NOP. De ontbrekende data kunnen worden opgevraagd bij lokale weerstations of in het project door projectpartners worden gerealiseerd.In de agrarische sector komt het vaak voor dat er ontbrekende data zijn over de factoren die bijdragen aan mislukkingen in de precisielandbouw. Dit komt doordat er vaak wordt gedacht in termen van wat wel werkt, in plaats van wat niet werkt. Een manier om dit tegen te gaan is door bewust te zijn van de ontbrekende data en deze proactief op te zoeken. Dit kan bijvoorbeeld door onderzoek te doen naar de milieu-impact van landbouw.Door dit project is beter inzicht verkregen in de effectiviteit van inputs alsmede met betrekking tot de impact op de omgeving. De volgende verbeteringen zijn gerealiseerd:• Beter inzicht in timing van teelthandelingen waardoor de bodem wordt ontzien.• Beter inzicht in effecten van teeltrotaties waardoor gekozen kan worden voor rotaties met minder impact en toch goede financiële resultaten behaald worden.• Door vergelijking kan er effectiever omgegaan worden met inputs zoals mest en gewasbeschermingsmiddelen waardoor naast minder gebruik ook minder af- en uitspoeling zal plaatsvinden.• Door effectiever gebruik van inputs zal per kg geproduceerde aardappelen minder oppervlakte, energie en chemie nodig zijn.Trefwoorden: digitalisering boerenbedrijf, data, pop3, databoeren, precisielandbouw RVO zaaknummer: 17717000042
DOCUMENT
BACKGROUND: ICT based solutions are increasingly introduced for active and healthy ageing. In this context continuous monitoring of older adults with domestic sensor systems has been suggested to provide important information about their functional health. However, there is not yet a solid model for the interpretation of the sensor data.OBJECTIVES: The aim of our study is to define a set of predictors of functional health that can be measured with domestic sensors and to determine thresholds that identify relevant changes in these predictors.METHODS: On the basis of literature we develop a model that relates functional health predictors to features derived from sensor data. The parameters of this model are determined on the basis of a study among health experts (n = 38). The use of the full model is illustrated with three cases.RESULTS: We identified 25 predictors and their attributes. For 12 of them that can be measured with passive infrared motion sensors we determined their parameters: the attribute thresholds and the urgency thresholds.CONCLUSIONS: With the parametrized predictors in the model, domestic sensors can be deployed to assess functional health in a standardized way. Three case examples showed how the model can be used as a screening instrument for functional decline.
DOCUMENT
The maturing field of Wireless Sensor Networks (WSN) results in long-lived deployments that produce large amounts of sensor data. Lightweight online on-mote processing may improve the usage of their limited resources, such as energy, by transmitting only unexpected sensor data (anomalies). We detect anomalies by analyzing sensor reading predictions from a linear model. We use Recursive Least Squares (RLS) to estimate the model parameters, because for large datasets the standard Linear Least Squares Estimation (LLSE) is not resource friendly. We evaluate the use of fixed-point RLS with adaptive thresholding, and its application to anomaly detection in embedded systems. We present an extensive experimental campaign on generated and real-world datasets, with floating-point RLS, LLSE, and a rule-based method as benchmarks. The methods are evaluated on prediction accuracy of the models, and on detection of anomalies, which are injected in the generated dataset. The experimental results show that the proposed algorithm is comparable, in terms of prediction accuracy and detection performance, to the other LS methods. However, fixed-point RLS is efficiently implementable in embedded devices. The presented method enables online on-mote anomaly detection with results comparable to offline LS methods. © 2013 IEEE.
DOCUMENT
Wireless sensor networks are becoming popular in the field of ambient assisted living. In this paper we report our study on the relationship between a functional health metric and features derived from the sensor data. Sensor systems are installed in the houses of nine people who are also quarterly visited by an occupational therapist for functional health assessments. Different features are extracted and these are correlated with a metric of functional health (the AMPS). Though the sample is small, the results indicate that some features are better in describing the functional health in the population, but individual differences should also be taken into account when developing a sensor system for functional health assessment.
DOCUMENT