Existing research on the recognition of Activities of Daily Living (ADL) from simple sensor networks assumes that only a single person is present in the home. In real life there will be situations where the inhabitant receives visits from family members or professional health care givers. In such cases activity recognition is unreliable. In this paper, we investigate the problem of detecting multiple persons in an environment equipped with a sensor network consisting of binary sensors. We conduct a real-life experiment for detection of visits in the oce of the supervisor where the oce is equipped with a video camera to record the ground truth. We collected data during two months and used two models, a Naive Bayes Classier and a Hidden Markov Model for a visitor detection. An evaluation of these two models shows that we achieve an accuracy of 83% with the NBC and an accuracy of 92% with a HMM, respectively.
MULTIFILE
On April 16 and 17, 2020, the third edition of the Sensor data challenge was held by The Hague University of Applied Sciences, Statistics Netherlands, Utrecht University and the National Institute for Public Health and the Environment. The Sensor data challenge provides hardware (various sensors, raspberryPI) and software to teams with a mix of expertise in electronics, mechatronics, data science, user experience and industrial design. Teams need to design a tool and demonstrate its feasibility and relevance for one of the presented challenges. The third challenge had sensor measurements for living and working as the central theme. Winning solutions of the two previous editions have been the starting point for large-scale ongoing research projects. We like to present a brief summary of the solutions presented by the participating teams at the third challenge and offer the winning team the opportunity to share and discuss their ideas at the BigSurv20 with a larger audience.
VIDEO
BACKGROUND: ICT based solutions are increasingly introduced for active and healthy ageing. In this context continuous monitoring of older adults with domestic sensor systems has been suggested to provide important information about their functional health. However, there is not yet a solid model for the interpretation of the sensor data.OBJECTIVES: The aim of our study is to define a set of predictors of functional health that can be measured with domestic sensors and to determine thresholds that identify relevant changes in these predictors.METHODS: On the basis of literature we develop a model that relates functional health predictors to features derived from sensor data. The parameters of this model are determined on the basis of a study among health experts (n = 38). The use of the full model is illustrated with three cases.RESULTS: We identified 25 predictors and their attributes. For 12 of them that can be measured with passive infrared motion sensors we determined their parameters: the attribute thresholds and the urgency thresholds.CONCLUSIONS: With the parametrized predictors in the model, domestic sensors can be deployed to assess functional health in a standardized way. Three case examples showed how the model can be used as a screening instrument for functional decline.
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
De glastuinbouw in Nederland is wereldwijd toonaangevend en loopt voorop in automatisering en data-gedreven bedrijfsvoering. Voor de data-gedreven teelt wordt, naast het monitoren van de kas-parameters ook het monitoren van gewasparameters steeds meer gevraagd. De sector is daarbij vooral geïnteresseerd in niet-destructieve, contactloze en persoonsonafhankelijk monitoring van gewassen. Optische sensortechnologie, zoals spectrale afbeeldingstechnologie, kan veel waardevolle informatie opleveren over de staat van een gewas of vrucht, bijvoorbeeld over het suikergehalte, maar ook de aanwezigheid van plantziektes of insecten. Echter is dit vaak een te kostbare oplossing voor zowel de technologiebedrijven die oplossingen leveren als voor de telers zelf. In dit project onderzoeken wij de mogelijkheid om spectrale beeldvorming tegen lagere kosten te realiseren. Het beoogde resultaat is een prototype van een instrument dat tegen lage kosten met spectrale beeldvorming een of meerdere gewaseigenschappen kan kwantificeren. Realisatie van dit prototype heeft een sterke Fotonica-component (expertise Haagse Hogeschool) maakt gebruik van Machine Learning (expertise perClass) en is bedoeld voor toepassing op scout robots in de glastuinbouw (expertise Mythronics). Een betaalbare oplossing betekent in potentie voor de teler een betere controle over kwaliteit van het gewas en automatisering voor detectie van ziekte-uitbraken. Bij een succesvol prototype kan deze innovatie leiden tot betere voedselkwaliteit en minder verspilling in de glastuinbouw.
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.