Existing research on the recognition of Activities of Daily Living (ADL) from simple sensor networks assumes that only a single person is present in the home. In real life there will be situations where the inhabitant receives visits from family members or professional health care givers. In such cases activity recognition is unreliable. In this paper, we investigate the problem of detecting multiple persons in an environment equipped with a sensor network consisting of binary sensors. We conduct a real-life experiment for detection of visits in the oce of the supervisor where the oce is equipped with a video camera to record the ground truth. We collected data during two months and used two models, a Naive Bayes Classier and a Hidden Markov Model for a visitor detection. An evaluation of these two models shows that we achieve an accuracy of 83% with the NBC and an accuracy of 92% with a HMM, respectively.
MULTIFILE
OBJECTIVES: to test the effects of an intervention involving sensor monitoring-informed occupational therapy on top of a cognitive behavioural treatment (CBT)-based coaching therapy on daily functioning in older patients after hip fracture.DESIGN, SETTING AND PATIENTS: three-armed randomised stepped wedge trial in six skilled nursing facilities, with assessments at baseline (during admission) and after 1, 4 and 6 months (at home). Eligible participants were hip fracture patients ≥ 65 years old.INTERVENTIONS: patients received care as usual, CBT-based occupational therapy or CBT-based occupational therapy with sensor monitoring. Interventions comprised a weekly session during institutionalisation, followed by four home visits and four telephone consultations over three months.MAIN OUTCOMES AND MEASURES: the primary outcome was patient-reported daily functioning at 6 months, assessed with the Canadian Occupational Performance Measure.RESULTS: a total of 240 patients (mean[SD] age, 83.8[6.9] years were enrolled. At baseline, the mean Canadian Occupational Performance Measure scores (range 1-10) were 2.92 (SE 0.20) and 3.09 (SE 0.21) for the care as usual and CBT-based occupational therapy with sensor monitoring groups, respectively. At six months, these values were 6.42 (SE 0.47) and 7.59 (SE 0.50). The mean patient-reported daily functioning in the CBT-based occupational therapy with sensor monitoring group was larger than that in the care as usual group (difference 1.17 [95% CI (0.47-1.87) P = 0.001]. We found no significant differences in daily functioning between CBT-based occupational therapy and care as usual.CONCLUSIONS AND RELEVANCE: among older patients recovering from hip fracture, a rehabilitation programme of sensor monitoring-informed occupational therapy was more effective in improving patient-reported daily functioning at six months than to care as usual.TRIAL REGISTRATION: Dutch National Trial Register, NTR 5716.
In this paper, we present a framework for gamified motor learning through the use of a serious game and high-fidelity motion capture sensors. Our implementation features an Inertial Measurement Unit and a set of Force Plates in order to obtain real-time, high-frequency measurements of patients' core movements and centre of pressure displacement during physical rehabilitation sessions. The aforementioned signals enable two mechanisms, namely a) a game avatar controlled through patient motor skills and b) a rich data stream for post-game motor performance analysis. Our main contribution is a fine-grained processing pipeline for sensor signals, enabling the extraction of a reliable and accurate mapping between patient motor movements, in-game avatar controls and overall motor performance. Moreover, we discuss the potential of this framework towards the implementation of personalised therapeutic sessions and present a pilot study conducted in that direction.
LINK
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
De technische en economische levensduur van auto’s verschilt. Een goed onderhouden auto met dieselmotor uit het bouwjaar 2000 kan technisch perfect functioneren. De economische levensduur van diezelfde auto is echter beperkt bij introductie van strenge milieuzones. Bij de introductie en verplichtstelling van geavanceerde rijtaakondersteunende systemen (ADAS) zien we iets soortgelijks. Hoewel de auto technisch gezien goed functioneert kunnen verouderde software, algorithmes en sensoren leiden tot een beperkte levensduur van de gehele auto. Voorbeelden: - Jeep gehackt: verouderde veiligheidsprotocollen in de software en hardware beperkten de economische levensduur. - Actieve Cruise Control: sensoren/radars van verouderde systemen leiden tot beperkte functionaliteit en gebruikersacceptatie. - Tesla: bij bestaande auto’s worden verouderde sensoren uitgeschakeld waardoor functies uitvallen. In 2019 heeft de EU een verplichting opgelegd aan automobielfabrikanten om 20 nieuwe ADAS in te bouwen in nieuw te ontwikkelen auto’s, ongeacht prijsklasse. De mate waarin deze ADAS de economische levensduur van de auto beperkt is echter nog onvoldoende onderzocht. In deze KIEM wordt dit onderzocht en wordt tevens de parallel getrokken met de mobiele telefonie; beide maken gebruik van moderne sensoren en software. We vergelijken ontwerpeisen van telefoons (levensduur van gemiddeld 2,5 jaar) met de eisen aan moderne ADAS met dezelfde sensoren (levensduur tot 20 jaar). De centrale vraag luidt daarom: Wat is de mogelijke impact van veroudering van ADAS op de economische levensduur van voertuigen en welke lessen kunnen we leren uit de onderliggende ontwerpprincipes van ADAS en Smartphones? De vraag wordt beantwoord door (i) literatuuronderzoek naar de veroudering van ADAS (ii) Interviews met ontwerpers van ADAS, leveranciers van retro-fit systemen en ontwerpers van mobiele telefoons en (iii) vergelijkend rij-onderzoek naar het functioneren van ADAS in auto’s van verschillende leeftijd en prijsklassen.
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.