Turkey has received consistent criticism from international media for having many naturalized athletes in its national squad, both in the Olympic Games and other major international sporting events. Similar criticisms have also been a feature of debates for a long time in domestic media, varying in views toward these athletes. This research focuses on media representations of naturalized athletes in Turkey between 2008 and 2020. We investigated the sentiments of news items from four major Turkish newspapers (Milliyet, Cumhuriyet, Sabah and Fanatik) on their stances toward naturalized athletes over the timespan of 2008–2020. Beside analyzing the sentiment of the media content both cumulatively and fragmentedly, we also identified the yearly trends and most featured sports in this context, combining qualitative and quantitative techniques. Our findings showed that sentiments in Turkish media toward naturalized athletes are mostly neutral and negative as well as with differences varying on the basis of the newspapers and news item types. The most criticism underlined pursuing “shortcut” success with naturalized athletes representing Turkey in the international arena. Among the featured sports, basketball, football, and track and field have been the most discussed ones in the naturalization context.
DOCUMENT
Corporate reputation is an intangible resource that is closely tied to an organization’s success but measuring it and to derive actions that can improve the reputations can be a long and expensive journey for an organization. In the available literature, corporate reputation is primarily measured through surveys, which can be time and cost intensive. This paper uses online reviews on the web as the source for a machine-learning driven aspect-based sentiment analysis that can enable organizations to evaluate their corporate reputation on a fine-grained level. The analysis is done unsupervised without organizations needing to manually label datasets. Using the insights generated through the analysis, on one hand, organizations can save costs and time to measure corporate reputation, and, on the other hand, it provides an in-depth analysis that splits the overall reputation into multiple aspects, with which organizations can identify weaknesses and in turn improve their corporate reputa tion. Therefore, this research is relevant for organizations aiming to understand and improve their corporate reputation to achieve success, for example, in form of financial performance, or for organizations that help and consult other organizations on their journeys to increased success. Our approach is validated, evaluated and illustrated with Trustpilot review data.
DOCUMENT
This paper presents a Decision Support System (DSS) that helps companies with corporate reputation (CR) estimates of their respective brands by collecting provided feedbacks on their products and services and deriving state-of-the-art key performance indicators. A Sentiment Analysis Engine (SAE) is at the core of the proposed DSS that enables to monitor, estimate, and classify clients’ sentiments in terms of polarity, as expressed in public comments on social media (SM) company channels. The SAE is built on machine learning (ML) text classification models that are cross-source trained and validated with real data streams from a platform like Trustpilot that specializes in user reviews and tested on unseen comments gathered from a collection of public company pages and channels on a social networking platform like Facebook. Such crosssource opinion analysis remains a challenge and is highly relevant in the disciplines of research and engineering in which a sentiment classifier for an unlabeled destination domain is assisted by a tagged source task (Singh and Jaiswal, 2022). The best performance in terms of F1 score was obtained with a multinomial naive Bayes model: 0,87 for validation and 0,74 for testing.
DOCUMENT
DOCUMENT
This research demonstrates the power and robustness of the vocabulary method by Hernández-Rubio et al. (2019) for aspect extraction from online review data. We showcase that this algorithm not only works on the English language based on the CoreNLP toolkit, but also extend it on the Dutch language, specifically with aid of the Frog toolkit. Results on sampled datasets for three different retailers show that it can be used to extract fine-grained aspects that are relevant to acquire corporate reputation insights.
DOCUMENT
A considerable amount of literature has been published on Corporate Reputation, Branding and Brand Image. These studies are extensive and focus particularly on questionnaires and statistical analysis. Although extensive research has been carried out, no single study was found which attempted to predict corporate reputation performance based on data collected from media sources. To perform this task, a biLSTM Neural Network extended with attention mechanism was utilized. The advantages of this architecture are that it obtains excellent performance for NLP tasks. The state-of-the-art designed model achieves highly competitive results, F1 scores around 72%, accuracy of 92% and loss around 20%.
DOCUMENT
Retail industry consists of the establishment of selling consumer goods (i.e. technology, pharmaceuticals, food and beverages, apparels and accessories, home improvement etc.) and services (i.e. specialty and movies) to customers through multiple channels of distribution including both the traditional brickand-mortar and online retailing. Managing corporate reputation of retail companies is crucial as it has many advantages, for instance, it has been proven to impact generated revenues (Wang et al., 2016). But, in order to be able to manage corporate reputation, one has to be able to measure it, or, nowadays even better, listen to relevant social signals that are out there on the public web. One of the most extensive and widely used frameworks for measuring corporate reputation is through conducting elaborated surveys with respective stakeholders (Fombrun et al., 2015). This approach is valuable but deemed to be laborious and resource-heavy and will not allow to generate automatic alerts and quick and live insights that are extremely needed in this era of internet. For these purposes a social listening approach is needed that can be tailored to online data such as consumer reviews as the main data source. Online review datasets are a form of electronic Word-of-Mouth (WOM) that, when a data source is picked that is relevant to retail, commonly contain relevant information about customers’ perceptions regarding products (Pookulangara, 2011) and that are massively available. The algorithm that we have built in our application provides retailers with reputation scores for all variables that are deemed to be relevant to retail in the model of Fombrun et al. (2015). Examples of such variables for products and services are high quality, good value, stands behind, and meets customer needs. We propose a new set of subvariables with which these variables can be operationalized for retail in particular. Scores are being calculated using proportions of positive opinion pairs such as <fast, delivery> or <rude, staff> that have been designed per variable. With these important insights extracted, companies can act accordingly and proceed to improve their corporate reputation. It is important to emphasize that, once the design is complete and implemented, all processing can be performed completely automatic and unsupervised. The application makes use of a state of the art aspect-based sentiment analysis (ABSA) framework because of ABSA’s ability to generate sentiment scores for all relevant variables and aspects. Since most online data is in open form and we deliberately want to avoid labelling any data by human experts, the unsupervised aspectator algorithm has been picked. It employs a lexicon to calculate sentiment scores and uses syntactic dependency paths to discover candidate aspects (Bancken et al., 2014). We have applied our approach to a large number of online review datasets that we sampled from a list of 50 top global retailers according to National Retail Federation (2020), including both offline and online operation, and that we scraped from trustpilot, a public website that is well-known to retailers. The algorithm has carefully been evaluated by manually annotating a randomly sampled subset of the datasets for validation purposes by two independent annotators. The Kappa’s score on this subset was 80%.
MULTIFILE
The main goal of this study was to investigate if a computational analyses of text data from the National Student Survey (NSS) can add value to the existing, manual analysis. The results showed the computational analysis of the texts from the open questions of the NSS contain information which enriches the results of standard quantitative analysis of the NSS.
DOCUMENT
Corporate reputation is becoming increasingly important for firms; social media platforms such as Twitter are used to convey their message. In this paper, corporate reputation will be assessed from a sustainability perspective. Using sentiment analysis, the top 100 brands of the Netherlands were scraped and analyzed. The companies were registered in the sustainable industry classification system (SICS) to perform the analysis on an industry level. A semantic search tool called Open Semantic Desktop Search was used to filter through the data to find keywords related to sustainability and corporate reputation. Findings show that companies that tweet more often about corporate reputation and sustainability receive overall a more positive sentiment from the public.
DOCUMENT