Comprehensive understanding of the merits of bottom-up urban development is lacking, thus hampering and complicating associated collaborative processes. Therefore, and given the assumed relevancies, we mapped the social, environmental and economic values generated by bottom-up developments in two Dutch urban areas, using theory-based evaluation principles. These evaluations raised insights into the values, beneficiaries and path dependencies between successive values, confirming the assumed effect of placemaking accelerating further spatial developments. It also revealed broader impacts of bottom-up endeavors, such as influences on local policies and innovations in urban development.
MULTIFILE
Augmented Play Spaces (APS) are (semi-) public environments where playful interaction isfacilitated by enriching the existing environment with interactive technology. APS canpotentially facilitate social interaction and physical activity in (semi-)public environments. Incontrolled settings APS show promising effects. However, people’s willingness to engagewith APSin situ, depends on many factors that do not occur in aforementioned controlledsettings (where participation is obvious). To be able to achieve and demonstrate thepositive effects of APS when implemented in (semi-)public environments, it is important togain more insight in how to motivate people to engage with them and better understandwhen and how those decisions can be influenced by certain (design) factors. TheParticipant Journey Map (PJM) was developed following multiple iterations. First,based on related work, and insights gained from previously developed andimplemented APS, a concept of the PJM was developed. Next, to validate and refinethe PJM, interviews with 6 experts with extensive experience with developing andimplementing APS were conducted. Thefirst part of these interviews focused oninfluential (design) factors for engaging people into APS. In the second part, expertswere asked to provide feedback on thefirst concept of the PJM. Based on the insightsfrom the expert interviews, the PJM was adjusted and refined. The Participant JourneyMap consists of four layers: Phases, States, Transitions and Influential Factors. There aretwo overarchingphases:‘Onboarding’and‘Participation’and 6statesa (potential)participant goes through when engaging with an APS:‘Transit,’‘Awareness,’‘Interest,’‘Intention,’‘Participation,’‘Finishing.’Transitionsindicate movements between states.Influential factorsare the factors that influence these transitions. The PJM supportsdirections for further research and the design and implementation of APS. Itcontributes to previous work by providing a detailed overview of a participant journeyand the factors that influence motivation to engage with APS. Notable additions are thedetailed overview of influential factors, the introduction of the states‘Awareness,’‘Intention’and‘Finishing’and the non-linear approach. This will support taking intoaccount these often overlooked, key moments in future APS research and designprojects. Additionally, suggestions for future research into the design of APS are given.
DOCUMENT
Purpose To empirically define the concept of burden of neck pain. The lack of a clear understanding of this construct from the perspective of persons with neck pain and care providers hampers adequate measurement of this burden. An additional aim was to compare the conceptual model obtained with the frequently used Neck Disability Index (NDI). Methods Concept mapping, combining qualitative (nominal group technique and group consensus) and quantitative research methods (cluster analysis and multidimensional scaling), was applied to groups of persons with neck pain (n = 3) and professionals treating persons with neck pain (n = 2). Group members generated statements, which were organized into concept maps. Group members achieved consensus about the number and description of domains and the researchers then generated an overall mind map covering the full breadth of the burden of neck pain. Results Concept mapping revealed 12 domains of burden of neck pain: impaired mobility neck, neck pain, fatigue/concentration, physical complaints, psychological aspects/consequences, activities of daily living, social participation, financial consequences, difficult to treat/difficult to diagnose, difference of opinion with care providers, incomprehension by social environment, and how person with neck pain deal with complaints. All ten items of the NDI could be linked to the mind map, but the NDI measures only part of the burden of neck pain. Conclusion This study revealed the relevant domains for the burden of neck pain from the viewpoints of persons with neck pain and their care providers. These results can guide the identification of existing measurements instruments for each domain or the development of new ones to measure the burden of neck pain.
DOCUMENT
TU Delft, in collaboration with Gravity Energy BV, has conducted a feasibility study on harvesting electric energy from wind and vibrations using a wobbling triboelectric nanogenerator (WTENG). Unlike conventional wind turbines, the WTENG converts wind/vibration energy into contact-separation events through a wobbling structure and unbalanced mass. Initial experimental findings demonstrated a peak power density of 1.6 W/m² under optimal conditions. Additionally, the harvester successfully charged a 3.7V lithium-ion battery with over 4.5 μA, illustrated in a self-powered light mast as a practical demonstration in collaboration with TimberLAB. This project aims to advance this research by developing a functioning prototype for public spaces, particularly lanterns, in partnership with TimberLAB and Gravity Energy. The study will explore the potential of triboelectric nanogenerators (TENG) and piezoelectric materials to optimize energy harvesting efficiency and power output. Specifically, the project will focus on improving the WTENG's output power for practical applications by optimizing parameters such as electrode dimensions and contact-separation quality. It will also explore cost-effective, commercially available materials and best fabrication/assembly strategies to simplify scalability for different length scales and power outputs. The research will proceed with the following steps: Design and Prototype Development: Create a prototype WTENG to evaluate energy harvesting efficiency and the quantity of energy harvested. A hybrid of TENG and piezoelectric materials will be designed and assessed. Optimization: Refine the system's design by considering the scaling effect and combinations of TENG-piezoelectric materials, focusing on maximizing energy efficiency (power output). This includes exploring size effects and optimal dimensions. Real-World Application Demonstration: Assess the optimized system's potential to power lanterns in close collaboration with TimberLAB, DVC Groep BV and Gravity Energy. Identify key parameters affecting the efficiency of WTENG technology and propose a roadmap for its exploitation in other applications such as public space lighting and charging.
The application of sensors in water technology is a crucial step to provide broader, more effi-cient and more circular systems. Among the different technologies used in this filed, ultra-sound based systems are widely used in water technology, basically to generate energy peaks for cell lyse and particle separation. In this work we propose the adaptation of a (cur-rently used for medical applications) ultra sound ecosystem to monitor the vertical profile of solid particles in UASB reactors. Such information is nowadays obtained via long duration (solids) analysis and can compromises the efficiency of such reactors, especially regarding the sludge stabilization and phase separation. The project is a small part of a big effort done by different countries, e.g. Brazil, UK and The Netherlands, to bring international technology and expertise to improve the quality of waste water systems in Brazil, by supporting tech-nology and knowledge sharing. If proven feasible, the concept can generate a big business market to the involved Dutch (SME) partners as well as favor the automation of WWTP in Brazil and around the world.