De maritieme industrie staat voor een grote duurzaamheidsopgave, waarbij oude methodes niet meer toereikend zijn. Nieuwe technieken (zoals grootschalige sensormetingen, dataverwerking, gegevensmodellering) kunnen ondersteuning bieden bij het ontwerpen van de schepen van de toekomst. Naast dit hoofdonderwerp wordt er ook aandacht geschonken aan een stabiliteitsgame, bovenwettelijke veiligheidsmaatregelen en de digital twin.
Dit artikel is met toestemming overgenomen uit Microniek, 2020, nr 5 Robotics research groups around the world are using Robot Operating System (ROS)to develop their prototypes quickly. While the first version of ROS was aimed primarilyat the R&D community, its successor, ROS 2, has been redesigned completely to beindustrial grade and applicable in research, prototyping, deployment and production.This allows ROS 2 prototypes to evolve into products suitable for real-worldapplications. To explore the state of the art, Saxion University of Applied Sciencesand nine companies are developing an industrial mobile robot. This article describesexperiences from the development process and presents an outlook on the potentialof ROS 2 for industry.
MULTIFILE
Reason’s typology of safety culture (i.e. Just, Informative, Learning, Flexible and Reporting cultures) is widely used in the industry and academia. Through literature review we developed a framework including 36 markers that reflect the operationalization of Reason’s sub-cultures and general organizational prerequisites. We used the framework to assess to what extent safety culture development guidelines of seven industry sectors (i.e. aviation, railway, oil and gas, nuclear, healthcare, defense and maritime) incorporate academic references, and are similar to each other. Gap analysis and statistics showed that the guidelines include 53–69 % of the safety culture markers, with significant differences across subcultures and industry sectors. The results suggested that there is a gap between the industry guidelines and literature, as well as variant approaches to safety culture across the industry. The framework suggested in the study might be used as reference for completing existing safety culture development plans and constructing safety culture assessment instruments.
The textile industry contributes over 8% of global greenhouse gas emissions and 20% of the world's wastewater, exceeding emissions from international flights and shipping combined. In the European Union, textile purchases in 2020 resulted in about 270 kg of CO₂ emissions per person, yet only 1% of used clothes are recycled into new garments.To address these challenges, the Textile Hub Groningen (THG) aims to assist small and medium-sized enterprises (SMEs) and stakeholders in forming circular textile value chains, hence reducing waste. Designing circular value chains is complex due to conflicting interests, lack of shared understanding, knowledge gaps regarding circular design principles and emerging technologies, and inadequate tools for collaborative business model development. The potential key stakeholders in the circular textile value chain find it hard to use existing tools and methods for designing these value chains as they are often abstract, not designed to be used in a collaborative setting that fosters collective sense making, immersive learning and experimentation. Consequently, the idea of circular textile value chain remains abstract and hard to realize.Serious games have been used in the past to learn about, simulate and experiment with complex adaptive systems. In this project we aim to answer the following research:How can serious games be leveraged to design circular textile value chains in the region?The expected outcomes of this project are: • Serious game: Facilitates the design of circular textile value chains• Academic Publication: Publish findings to contribute to scholarly discourse.• Future Funding Preparation: Mobilize partners and prepare proposals for follow-up funding to expand the approach to other domains.By leveraging game-based collaborative circular value chain and business model design experiences, this project aims to overcome barriers in designing viable circular value chains in the textile industry.
The textile industry is responsible for over 8% of global greenhouse gas emissions and 20% of the world’s wastewater, surpassing the emissions from international flights and shipping combined. In the European Union, textile purchases in 2020 led to around 270 kg of CO₂ emissions per person, yet only 1% of used clothing is recycled into new garments. The municipality of Groningen manages an estimated 950 kilotons of textile waste but is only able to collect, sort, and recycle 250 kilotons. To address these challenges, Textile Hub Groningen (THG) seeks to support small and medium-sized enterprises (SMEs) and stakeholders in creating circular textile value chains. However, designing circular value chains presents challenges, including conflicting interests, knowledge gaps on circular design principles, and inadequate tools for collaborative business model development. Potential stakeholders often find current tools too abstract and not conducive to collaboration, learning, or experimentation. As a result, circular value chains remain difficult to achieve from the perspective of individual stakeholders. Serious games have been employed to simulate and experiment with complex adaptive systems , . Research shows that well-designed playful learning enhances both learning and motivation, particularly when social elements are integrated . This project aims to answer the following research question: How can serious games be leveraged to design circular textile value chains in the region? The expected outcomes are: 1. Serious Game: Design, test, and deliver a serious game to facilitate the joint design of circular textile value chains. 2. Publications: Extract insights from the game’s design and evaluation, contributing to both academic and practical discussions. 3. Consortium for Follow-up: Mobilize partners and secure funding for future projects in related fields. Through game-based collaborative circular value chain and business model design experiences, this project overcomes barriers in designing viable circular value chains in the textile industry