The textiles and apparel industry is a major contributor to economic development while at the same time being one of the most polluting industries due to its lengthy supply chain and resource intensive production operations. To address these sustainability challenges, digitalization is seen as one of the potential solutions. Using the lens of sustainability and digitalization in Supply Chain Management (SCM), this paper analyses the sustainability and digitalization status of Dutch textile and apparel firms. We used a mixed methodology of quantitative text mining of 94 Dutch textile and apparel firms as well as qualitative thematic and coding analysis of experts’ views and opinions on sustainability and digitalization in the Dutch textiles and apparel industry. Quantitative analysis of website data shows that Dutch textile and apparel firms predominantly communicate the environmental, to a lesser extent social, and least of all economic sustainability factors. Keyword analysis also shows that the use of technological keyword indicators is less prominent, while certain technologies such as IoT, sensors and blockchain correlate mostly to environmental sustainability factors. Moreover, qualitative analysis reveals that to address sustainability via digitalization, it is important to link sustainability goals to Key Performance Indicators, which requires data for traceability. We recommend firms to: (1) re-evaluate their business models and assess the extent traceability can be incorporated in their sustainability strategy; (2) enhance stakeholder collaboration within and outside the supply chain to utilize traceability; and (3) proactively use traceability information to improve transparency and accountability to meet legal requirements and address greenwashing. This study contributes to literature by showing the importance of traceability for (a) linking sustainability and digitalization in SCM, b) achieving the ultimate goals of transparency and accountability, and c) predicting demand and supply to address overproduction and waste in the textiles and apparel sector.
MULTIFILE
This article will analyze how blockchain technology is applied tomanage and track cargo movement across the globe. First, thedistribution of goods, as well as the bill of lading and quality assurance,the shipping time with the lowest cost, is always a problem for logisticscompanies. The cost of securing goods during transit or long time tocomplete customs procedures also affects the delivery results. This studywill provide problems for the company as well as the impact of the useof blockchain technology developed by IMB in Maersk 's logisticsmanagement system. Thereby the management of goods as well asguarantee orders to win the trust of customers as well as bringenormous profits for themselves Maersk company and provide a newdirection for Indo-Trans Logistics, Vietnam.
MULTIFILE
Dit artikel is met toestemming overgenomen uit Microniek, 2020, nr 5 Robotics research groups around the world are using Robot Operating System (ROS)to develop their prototypes quickly. While the first version of ROS was aimed primarilyat the R&D community, its successor, ROS 2, has been redesigned completely to beindustrial grade and applicable in research, prototyping, deployment and production.This allows ROS 2 prototypes to evolve into products suitable for real-worldapplications. To explore the state of the art, Saxion University of Applied Sciencesand nine companies are developing an industrial mobile robot. This article describesexperiences from the development process and presents an outlook on the potentialof ROS 2 for industry.
MULTIFILE
The textile industry is responsible for over 8% of global greenhouse gas emissions and 20% of the world’s wastewater, surpassing the emissions from international flights and shipping combined. In the European Union, textile purchases in 2020 led to around 270 kg of CO₂ emissions per person, yet only 1% of used clothing is recycled into new garments. The municipality of Groningen manages an estimated 950 kilotons of textile waste but is only able to collect, sort, and recycle 250 kilotons. To address these challenges, Textile Hub Groningen (THG) seeks to support small and medium-sized enterprises (SMEs) and stakeholders in creating circular textile value chains. However, designing circular value chains presents challenges, including conflicting interests, knowledge gaps on circular design principles, and inadequate tools for collaborative business model development. Potential stakeholders often find current tools too abstract and not conducive to collaboration, learning, or experimentation. As a result, circular value chains remain difficult to achieve from the perspective of individual stakeholders. Serious games have been employed to simulate and experiment with complex adaptive systems , . Research shows that well-designed playful learning enhances both learning and motivation, particularly when social elements are integrated . This project aims to answer the following research question: How can serious games be leveraged to design circular textile value chains in the region? The expected outcomes are: 1. Serious Game: Design, test, and deliver a serious game to facilitate the joint design of circular textile value chains. 2. Publications: Extract insights from the game’s design and evaluation, contributing to both academic and practical discussions. 3. Consortium for Follow-up: Mobilize partners and secure funding for future projects in related fields. Through game-based collaborative circular value chain and business model design experiences, this project overcomes barriers in designing viable circular value chains in the textile industry