From Science direct: One of the nanowires was covered with a 2-Hydroxyethyl methacrylate based compound to prevent hydrogen from reaching the wire. The compound was dried by a UV source and tested in chamber for comparison with previous measurements. The results shows that temperature effects can be reduced by a digital signal processing algorithm without measuring temperature near or at the substrate. With this method no additional temperature probes are necessary making this solution a candidate for ultra low power wireless applications.
MULTIFILE
An operational amplifier based instrumentation amplifier (IA) with a common-mode rejection ratio (CMRR) independent of resistance tolerances is presented in this paper. The CMRR is determined by the operational amplifier characteristics. The IA shows a high CMRR up to 100 kHz. Moreover, since the presented IA operates in the current domain, no large internal voltage swings occur, making it an interesting choice for low-voltage applications in situations where common-mode disturbances may affect the signal processing.
Electrohydrodynamic Atomization (EHDA), also known as Electrospray (ES), is a technology which uses strong electric fields to manipulate liquid atomization. Among many other areas, electrospray is currently used as an important tool for biomedical applications (droplet encapsulation), water technology (thermal desalination and metal recovery) and material sciences (nanofibers and nano spheres fabrication, metal recovery, selective membranes and batteries). A complete review about the particularities of this technology and its applications was recently published in a special edition of the Journal of Aerosol Sciences [1]. Even though EHDA is already applied in many different industrial processes, there are not many controlling tools commercially available which can be used to remotely operate the system as well as identify some spray characteristics, e.g. droplet size, operational mode, droplet production ratio. The AECTion project proposes the development of an innovative controlling system based on the electrospray current, signal processing & control and artificial intelligence to build a non-visual tool to control and characterize EHDA processes.