A case study and method development research of online simulation gaming to enhance youth care knowlegde exchange. Youth care professionals affirm that the application used has enough relevance as an additional tool for knowledge construction about complex cases. They state that the usability of the application is suitable, however some remarks are given to adapt the virtual environment to the special needs of youth care knowledge exchange. The method of online simulation gaming appears to be useful to improve network competences and to explore the hidden professional capacities of the participant as to the construction of situational cognition, discourse participation and the accountability of intervention choices.
DOCUMENT
When it comes to hard to solve problems, the significance of situational knowledge construction and network coordination must not be underrated. Professional deliberation is directed toward understanding, acting and analysis. We need smart and flexible ways to direct systems information from practice to network reflection, and to guide results from network consultation to practice. This article presents a case study proposal, as follow-up to a recent dissertation about online simulation gaming for youth care network exchange (Van Haaster, 2014).
DOCUMENT
Game Mechanics is aimed at game design students and industry professionals who want to improve their understanding of how to design, build, and test the mechanics of a game. Game Mechanics will show you how to design, test, and tune the core mechanics of a game—any game, from a huge role-playing game to a casual mobile phone game to a board game. Along the way, we’ll use many examples from real games that you may know: Pac-Man, Monopoly, Civilization, StarCraft II, and others. The authors provide two features. One is a tool called Machinations that can be used to visualize and simulate game mechanics on your own computer, without writing any code or using a spreadsheet. The other is a design pattern library, including the deep structures of game economies that generate challenge and many kinds of feedback loops.
DOCUMENT
Aim. Although cultural dimensions theory is a topical strand of quantitative cultural research, few intercultural simulation games use it. We present the design and review of the application of OASISTAN, an intercultural role-playing simulation game that is specifically based on cultural dimensions theory. Method. OASISTAN was first designed in 1999 for use in Master’s courses on cross-cultural management at Delft University of Technology in the Netherlands, attracting 20-23 year old students with a Bachelor degree in engineering and from various cultural backgrounds. Since its first design the game has been played approximately 45 times at Delft University of Technology in the Netherlands and three times at Harbin Institute of Technology in China in the years 2006-2008. We reviewed their experiences designing and facilitating OASISTAN since 1999. Results. The game has a no-tech role-play design and revolves around the geopolitically complex region of the Caspian Sea, specifically the fictional country of ‘Oasistan’. The game consists of students forming small teams of Oasistani, Western and non-Western public/private actors collaborating with each other to try and reach the common goal of oil exploration and production in this country. In total 15-30 students were involved. We found that OASISTAN allowed its players not only to intensely experience the difficulty and awkwardness of being confronted with cultural differences, but also to interpret and understand these differences through cultural dimensions. Students who played OASISTAN identified ten out of the 12 dimensions by Maleki and De Jong. The two dimensions that students were not able to identify are uncertainty avoidance and collaborativeness. Conclusion. OASISTAN shows how a game design field (i.e., intercultural simulation gaming) can be reinvigorated in light of new or updated scientific theories pertaining to the field’s subject matter (i.e., cultural dimensions). Several opportunities for future research are identified.
MULTIFILE
The research goal of this dissertation is to make configurational HRM usable for science and practice by developing a simulation model and serious game. These tools offer HRM professionals the opportunity to design a multiyear HRM configuration that shapes employee behaviour, while enabling HRM research to get access to a level of detail that was not achieved earlier, contributing to the current state of the art knowledge on strategic HRM. To shape employee behavior in such a way that it contributes to overarching organizational goals, organizations often deploy a set of human resource management (HRM) practices. If the set of individual HRM-practices is designed correctly, they amplify each other in shaping the desired behavior. However, while there is wide agreement on the importance of combining HRM-practices in a configuration that reflects the organizational strategy, we notice a lack of consensus on which HRM-practices need to be combined given a specific strategic goal and organizational starting point. Furthermore, we did not find an agreement on how to design HRM configurations that shape the desired employee behavior within organizations in multiple years. As a result, HRM professionals that design HRM configurations are left empty handed. While the configurational approach has the potential to provide new insight on how HRM shapes employees’ behavior, applying the configurational mode of theorizing to HRM remains challenging. We explain this challenge by the level of theoretical and practical detail that is needed, by the application of the holistic principle when studying HRM configurations, and due to methodological issues. Traditional methods do not align to the dynamic assumptions and the large number of variables included in configurational HRM. In this dissertation we pose that the time is ripe to unlock the deserved value of configurational HRM for theory and practice. We do so by specifying the underlying assumptions and dynamic implications of the configurational mode of theorizing in HRM, and by defining and adding the needed level of detail. In the current research, configurational HRM is made applicable with the use of a simulation model and serious game. -172- Five sequential steps are taken to make configurational HRM applicable. Firstly, key principles of configurational HRM are identified. Secondly, to ground the simulation we look at the manifestation of ideal type HRM configurations in theory and practice. Thirdly, we collect the solidified practical knowledge of HRM professionals on the alignment of HRM-practices. Fourthly, an initial simulation model is created and tested. And finally, we solidified the simulation model for practice and research by implementing it in a serious game for HRM professionals. Taking these five steps, we have specified configurational HRM to an unprecedented level of detail that allows us to address its complexity empirically and theoretically. We claim that with the results of this research we have opened the scientific and empirical “black box” of configurational HRM. Furthermore, the simulation model and serious game provides HRM professionals with a tool to design firm specific HRM configurations in an interactive and fun way. While prior studies did already acknowledge the importance of alignment when designing HRM, the simulation model and serious game specify the general concept of alignment to a level at which HRM professionals and researchers can start selecting, designing, implementing and researching HRM configurations. The tools provide HRM professionals with a method to grasp, maneuver through the complexity of, and explore the implementation of multi-year firm specific HRM.
MULTIFILE
This paper presents the design of the offshore energy simulation CEL as a flow network, and its integration in the MSP Challenge 2050 simulation game platform. This platform is designed to aid learning about the key characteristics and complexity of marine or maritime spatial planning (MSP). The addition of CEL to this platform greatly AIDS MSP authorities in learning about and planning for offshore energy production, a highly topical and big development in human activities at sea. Rather than a standard flow network, CEL incorporates three additions to accommodate for the specificities of energy grids: an additional node for each team's expected energy, a split of each node representing an object into input and output parts to include the node's capacity, and bidirectional edges for all cables to enable more complex energy grid designs. Implemented with Dinic's algorithm it takes less than 30ms for the simulation to run for the average amount of grids included in an MSP Challenge 2050 game session. In this manner CEL enables MSP authorities and their energy stakeholders to use MSP Challenge 2050 for designing and testing more comprehensive offshore energy grids.
DOCUMENT
A building block approach to simulation uses modules that are easily reusable and therefore speed up the simulation process. The authors assume that this approach can enhance complex decision making between stakeholders on infrastructure planning and design. The authors combined insights from process management and a simulation building block approach into an experimental interactive decision-making procedure and developed a simulation building block tool. The authors tested the procedure and the tool in the game CONTAINERS ADRIFT. Evaluation results indicate that the simulation tool is fast and easy to work with and that the combination of simulation building blocks and process management contributes to the quality and process of negotiation and generates mutual understanding.
DOCUMENT
To aid HR practitioners in their design of firm specific HRM configurations, andcontribute to the state of the art HRM knowledge, we created a simulation model. In this paper we present the simulation model, and the serious game in which it was implemented, but focus on the practical and academical implication of creating and using our initial HRM simulation model.Deciding which HR-practices to select, and how to design them in a multiyear HRMconfiguration is a challenging task for any HR-practitioner due to the large number of interrelated options to pick from. In particular as, according to configurational HRM, the configuration of HR-practices needs to reflect the organizational strategy (vertical alignment) and show internal consistency (horizontal alignment). Currently, no (technological) tool aids HR-practitioners in their quest to design an aligned HRM configuration. To fill this void, we created an HRM simulation model and used it in a serious game which was played during workshops with HR-practitioners.Configurational HRM postulates that HRM configuration need to be both verticallyand horizontally aligned. However, to date, no specific information on how to make these levels of alignment happen is present. As a result, no specific hypothesis based on configurational HRM has been defined and empirical validation of this mode of theorizing is limited. Using the simulation model and serious game we aspire to specify the configurational mode of theorizing with a new level of detail enabling more precise empirical exploration of configurational HRM.The creation of an HRM simulation model and serious game proved to beworthwhile. During the workshops, HR-practitioners stated that the simulation model and game enables them to get to grips with the complexity of designing a firm specific HRM configuration. Furthermore, the simulation model enables us to specify configurational HRM to a new level of detail enabling a wide variety of research opportunities. The simulation model, serious game, and implications are discussed in this paper.
MULTIFILE
The authors present the design of the shipping simulation SEL and its integration in the MSP Challenge Simulation Platform. This platform is designed to give policymakers and planners insight into the complexity of Maritime Spatial Planning (MSP) and can be used for interactive planning support. It uses advanced game technology to link real geo- and marine data with simulations for ecology, energy and shipping. The shipping sector is an important economic sector with influential stakeholders. SEL calculates the (future) impact of MSP decisions on shipping routes. This is dynamically shown in key performance indicators (e.g. route efficiencies) and visualised in heat maps of ship traffic. SEL uses a heuristic-based graph-searching algorithm to find paths from one port to another during each simulated month. The performance of SEL was tested for three sea basins: the firth of Clyde, Scotland (smallest), North Sea (with limited data) and Baltic Sea regions (largest, with most complete data). The behaviour of the model is stable and valid. SEL takes between 4 and 17 seconds to generate the desired monthly output. Experiences in 20 sessions with 302 planners, stakeholders and students indicate that SEL is a valuable addition to MSP Challenge, and thereby to MSP.
DOCUMENT
The Maritime Spatial Planning (MSP) Challenge simulation platform helps planners and stakeholders understand and manage the complexity of MSP. In the interactive simulation, different data layers covering an entire sea region can be viewed to make an assessment of the current status. Users can create scenarios for future uses of the marine space over a period of several decades. Changes in energy infrastructure, shipping, and the marine environment are then simulated, and the effects are visualized using indicators and heat maps. The platform is built with advanced game technology and uses aspects of role-play to create interactive sessions; it can thus be referred to as serious gaming. To calculate and visualize the effects of planning decisions on the marine ecology, we integrated the Ecopath with Ecosim (EwE) food web modeling approach into the platform. We demonstrate how EwE was connected to MSP, considering the range of constraints imposed by running scientific software in interactive serious gaming sessions while still providing cascading ecological feedback in response to planning actions. We explored the connection by adapting two published ecological models for use in MSP sessions. We conclude with lessons learned and identify future developments of the simulation platform.
MULTIFILE