Deictic gestures are gestures we make during communication to point at objects or persons. Indicative acts of directing-to guide the addressee to an object, while placing-for acts place an object for the addressee’s attention. Commonly used presentation software tools, such as PowerPoint and Keynote, offer ample support for placing-for gestures, e.g. slide transitions, progressive disclosure of list items and animations. Such presentation tools, however, do not generally offer adequate support for the directing-to indicative act (i.e. pointing gestures). In this paper we argue the value of presenting deictic gestures to a remote audience. Our research approach is threefold: identify indicative acts that are naturally produced by presenters; design tangible gestures for multi-touch surfaces that replicate the intent of those indicative acts; and design a set of graphical effects for remote viewing that best represent these indicative acts for the audience. Clinton Jorge1, Jos P. van Leeuwen2, Dennis Dams3, Jan Bouwen4 1 University of Madeira, Madeira-ITI, Funchal, Portugal; 2 The Hague University of Applied Sciences, The Hague, Netherlands; 3,4 Bell Labs, Alcatel-Lucent, Antwerp, Belgium Copyright shared between: University of Madeira, Madeira-ITI, Funchal, Portugal; The Hague University of Applied Sciences, The Hague, Netherlands; Bell Labs, Alcatel-Lucent, Antwerp, Belgium
DOCUMENT
Greenhouses are in need of new monitoring tools, as they size grow bigger and bigger but still using old labour intensive methods ways of caring for the crop. HiPerGreen is set out to create a new tool, which can drive onto the pre-existing heating pipes to provide a birds eye perspective for image analysis purposes. However, clear images are necessary for consistent usable data. This presentation resumes the steps taken during the reporting: the optimisation of a rail based system towards clear images. This is done through analysis of resulting images, understanding vibrations and oscillations, and finally presents results based on prototyping. Moreover, a re-design of the electronics and hardware was also introduce to facilitate prototyping. The results are promising, laying within the requirements.
DOCUMENT
It will be hard to find a Dutchmen under 50 years old who is not able to understand and speak English. Dutch pupils in secondary education spend about 4 hours a week studying grammar, reading texts, listening to conversations and giving presentations, all in English and that for four to six years. They even study cultural and historical aspects of the English speaking world. Music, films and playing online-computer games all add to a better understanding of the English language. The quality of most Dutch vowels and consonants are quite close to the quality of many English vowels and consonants. Most of the time an English utterance produced with Dutch vowel and consonant qualities will still be easily understood by native speakers of English. Phonological interference does not automatically make a Dutchman’s English unintelligible. However, why is it so easy to recognise a Dutchman as being Dutch while speaking English? Would it not be worthwhile to try and achieve a near-native accent for our pupils and students?
DOCUMENT