The Smart Current Limiter is a switching DC to DC converter that provides a digitally pre-set input current control for inrush limiting and power management. Being able to digitally adjust the current level in combination with external feedback can be used for control systems like temperature control in high power DC appliances. Traditionally inrush current limiting is done using a passive resistance whose resistance changes depending on the current level. Bypassing this inrush limiting resister with a Mosfet improves efficiency and controllability, but footprint and losses remain large. A switched current mode controlled inrush limiter can limit inrush currents and even control the amount of current passing to the application. This enables power management and inrush current limitation in a single device. To reduce footprint and costs a balance between losses and cost-price on one side and electromagnetic interference on the other side is sought and an optimum switching frequency is chosen. To reduce cost and copper usage, switching happens on a high frequency of 300kHz. This increases the switching losses but greatly reduces the inductor size and cost compared to switching supplies running on lower frequencies. Additional filter circuits like snubbers are necessary to keep the control signals and therefore the output current stable.
DOCUMENT
The built environment requires energy-flexible buildings to reduce energy peak loads and to maximize the use of (decentralized) renewable energy sources. The challenge is to arrive at smart control strategies that respond to the increasing variations in both the energy demand as well as the variable energy supply. This enables grid integration in existing energy networks with limited capacity and maximises use of decentralized sustainable generation. Buildings can play a key role in the optimization of the grid capacity by applying demand-side management control. To adjust the grid energy demand profile of a building without compromising the user requirements, the building should acquire some energy flexibility capacity. The main ambition of the Brains for Buildings Work Package 2 is to develop smart control strategies that use the operational flexibility of non-residential buildings to minimize energy costs, reduce emissions and avoid spikes in power network load, without compromising comfort levels. To realise this ambition the following key components will be developed within the B4B WP2: (A) Development of open-source HVAC and electric services models, (B) development of energy demand prediction models and (C) development of flexibility management control models. This report describes the developed first two key components, (A) and (B). This report presents different prediction models covering various building components. The models are from three different types: white box models, grey-box models, and black-box models. Each model developed is presented in a different chapter. The chapters start with the goal of the prediction model, followed by the description of the model and the results obtained when applied to a case study. The models developed are two approaches based on white box models (1) White box models based on Modelica libraries for energy prediction of a building and its components and (2) Hybrid predictive digital twin based on white box building models to predict the dynamic energy response of the building and its components. (3) Using CO₂ monitoring data to derive either ventilation flow rate or occupancy. (4) Prediction of the heating demand of a building. (5) Feedforward neural network model to predict the building energy usage and its uncertainty. (6) Prediction of PV solar production. The first model aims to predict the energy use and energy production pattern of different building configurations with open-source software, OpenModelica, and open-source libraries, IBPSA libraries. The white-box model simulation results are used to produce design and control advice for increasing the building energy flexibility. The use of the libraries for making a model has first been tested in a simple residential unit, and now is being tested in a non-residential unit, the Haagse Hogeschool building. The lessons learned show that it is possible to model a building by making use of a combination of libraries, however the development of the model is very time consuming. The test also highlighted the need for defining standard scenarios to test the energy flexibility and the need for a practical visualization if the simulation results are to be used to give advice about potential increase of the energy flexibility. The goal of the hybrid model, which is based on a white based model for the building and systems and a data driven model for user behaviour, is to predict the energy demand and energy supply of a building. The model's application focuses on the use case of the TNO building at Stieltjesweg in Delft during a summer period, with a specific emphasis on cooling demand. Preliminary analysis shows that the monitoring results of the building behaviour is in line with the simulation results. Currently, development is in progress to improve the model predictions by including the solar shading from surrounding buildings, models of automatic shading devices, and model calibration including the energy use of the chiller. The goal of the third model is to derive recent and current ventilation flow rate over time based on monitoring data on CO₂ concentration and occupancy, as well as deriving recent and current occupancy over time, based on monitoring data on CO₂ concentration and ventilation flow rate. The grey-box model used is based on the GEKKO python tool. The model was tested with the data of 6 Windesheim University of Applied Sciences office rooms. The model had low precision deriving the ventilation flow rate, especially at low CO2 concentration rates. The model had a good precision deriving occupancy from CO₂ concentration and ventilation flow rate. Further research is needed to determine if these findings apply in different situations, such as meeting spaces and classrooms. The goal of the fourth chapter is to compare the working of a simplified white box model and black-box model to predict the heating energy use of a building. The aim is to integrate these prediction models in the energy management system of SME buildings. The two models have been tested with data from a residential unit since at the time of the analysis the data of a SME building was not available. The prediction models developed have a low accuracy and in their current form cannot be integrated in an energy management system. In general, black-box model prediction obtained a higher accuracy than the white box model. The goal of the fifth model is to predict the energy use in a building using a black-box model and measure the uncertainty in the prediction. The black-box model is based on a feed-forward neural network. The model has been tested with the data of two buildings: educational and commercial buildings. The strength of the model is in the ensemble prediction and the realization that uncertainty is intrinsically present in the data as an absolute deviation. Using a rolling window technique, the model can predict energy use and uncertainty, incorporating possible building-use changes. The testing in two different cases demonstrates the applicability of the model for different types of buildings. The goal of the sixth and last model developed is to predict the energy production of PV panels in a building with the use of a black-box model. The choice for developing the model of the PV panels is based on the analysis of the main contributors of the peak energy demand and peak energy delivery in the case of the DWA office building. On a fault free test set, the model meets the requirements for a calibrated model according to the FEMP and ASHRAE criteria for the error metrics. According to the IPMVP criteria the model should be improved further. The results of the performance metrics agree in range with values as found in literature. For accurate peak prediction a year of training data is recommended in the given approach without lagged variables. This report presents the results and lessons learned from implementing white-box, grey-box and black-box models to predict energy use and energy production of buildings or of variables directly related to them. Each of the models has its advantages and disadvantages. Further research in this line is needed to develop the potential of this approach.
DOCUMENT
Uit het rapport: "Deze onderzoeksagenda is tot stand gebracht door de lectoren die samenwerken in het Nationaal Lectoren Platform Urban Energy. Alle betrokkenen bij het platform zijn in staat gesteld om bij te dragen aan de tekst, speciale dank daarbij voor de bijdragen en commentaren vanuit de TKI Urban Energy en de HCA topsector Energie."
DOCUMENT
Wat is de mogelijke rol van lokale duurzame energiesystemen en –initiatieven in de overgang naar een duurzame samenleving? En hoe kunnen op lokale toepassing gerichte innovaties worden ontwikkeld en toegepast op een zodanige manier dat deze bij lokale systemen en initiatieven aansluiten?Deze vragen staan centraal in dit onderzoeksproject dat zich richt op innovaties die rekening houden met een grotere rol van burgers bij een duurzame energievoorziening. Het project behelst echter meer dan het verrichten van onderzoek. Het beoogt bouwstenen te leveren voor een duurzame samenleving waarin meer ruimte is voor lokale (burger)initiatieven. We stellen drie deelprojecten voor:1. een vergelijkende studie naar energiecoöperaties en vergelijkbare innovatieve initiatieven, binnen en buiten Nederland, in heden en verleden. Daarbij hopen we lering te kunnen trekken uit de succesvolle ervaringen in Denemarken en Oostenrijk en van innovaties door coöperatiesen collectieven in het verleden.2. een analyse van energie-innovaties die beogen aan te sluiten bij lokale energiesystemen. Concreet zal het onderzoek zich richten op speciale batterijen, ontwikkeld dor het bedrijf Dr.Ten, en een soort slimme grote zoneboiler, ontwikkeld door het gelijknamige bedrijf Ecovat.3. De ontwikkeling van drie scenario’s, gebaseerd op inzichten uit studies 1 en 2. De scenario’s zullen bijvoorbeeld inhoudelijk verschillen in de mate waarin deze geïntegreerd zijn in bestaande energiesystemen. Deze zullen worden ontwikkeld en besproken met relevante stakeholders.Het onderzoek moet leiden tot een nauwkeurig overzicht van de mate van interesse en betrokkenheid van stakeholders en van de beperkingen en mogelijkheden van lokale energiesystemen en daarbij betrokken technologie. Ook leidt het tot een routemap voor duurzame energiesystemen op lokaal niveau. Het project heeft een technisch aspect, onderzoek naar verfijning en ontwikkeling van de technologie en een sociaal en normatief aspect, studies naar aansluitingsmogelijkheden bij de wensen en mogelijkheden van burgers, instanties en bedrijven in Noord-Nederland. Bovenal is het integratief en ontwerpend van karakter.This research proposal will explore new socio- technical configurations of local community-based sustainable energy systems. Energy collectives successfully combine technological and societal innovations, developing new business and organization models. A better understanding of their dynamics and needs will contribute to their continued success and thereby contribute to fulfilling the Top Sector’s Agenda. This work will also enhance the knowledge position of the Netherlands on this topic. Currently, over 500 local energy collectives are active in The Netherlands, many of them aim to produce their own sustainable energy, with thousands more in Europe. These collectives search for a new more local-based ways of organizing a sustainable society, including more direct democratic decision-making and influence on local living environment. The development of the collectives is enabled by openings in policy but –evenly important - by innovations in local energy production technologies (solar panels, windmills, biogas installations). Their future role in the sustainable energy transition can be strengthened by careful aligning new organizational and technological innovations in local energy production, storage and smart micro-grids.
AANLEIDING In het RAAK-MKB project ‘Gelijkspanning breng(t) je verder’ heeft De Haagse Hogeschool, specifiek de opleiding Elektrotechniek, ervaren dat de opkomst van het onderwerp ‘Gelijkspanning’ (ook wel DC) in het beroepenveld sterk samenhangt met ontwikkelingen in het vakgebied van ‘Vermogenselektronica’ of ‘Power Eletronics’. Het beroepenveld vraagt steeds vaker om steeds meer kennis op dit vakgebied, in het kader van bijvoorbeeld de energietransitie, Smart Grids, Internet-of-Things etc. Om deze kennis op een goed gestructureerde wijze over te dragen aan studenten, moeten er een aantal belemmeringen worden weggewerkt. Een van deze belemmeringen is de beperkte beschikbaarheid van kennis; het vakgebied is relatief nieuw en nog sterk in ontwikkeling. Binnen De Haagse Hogeschool is door de opleiding Elektrotechniek (met kennis van de nog weg te werken belemmeringen) de bewuste keuze gemaakt om zich binnen Nederland te willen profileren met het onderwerp ‘Gelijkspanning’. Vanuit het eerdere RAAK-MKB project ‘Gelijkspanning breng(t) je verder’ werden hiertoe een eerste vak en practicum ontwikkeld: Vermogenselektronica 1. Hierin worden beginselen van DC-DC omvormers behandeld. DC-DC omvormers zorgen voor het transformeren van DC-spanningen, om energie bij hoge spanningen en dus lage verliezen te kunnen transporteren. Vanaf het huidige collegejaar (2015-2016) is ook een tweede vak op dit gebied toegevoegd aan het curriculum: Vermogenselektronica 2: hierin worden DC-AC omvormers op hoofdlijnen behandeld. Deze omvormers zorgen ervoor dat veel gebruikte types motoren aangedreven kunnen worden met gelijkspanning. Deze hoofdlijnen staan in de ogen van het beroepenveld nog (te) ver af van toepassingen waarmee zij werken. Daarbij moet gedacht worden aan bijvoorbeeld elektrische mobiliteit (specifieke types motoren), verlichting (DC-DC), distributietechnieken (DC-DC op hogere vermogens) of slimme netten (integratie van energietechniek, communicatietechnologie en regeltechniek / embedded systems). DOELSTELLING Het doel van het project is het opstellen van een implementatiewijze ter verdere invulling van de onderwerpen ‘Gelijkspanning’ en ‘Vermogenselektronica’ in het curriculum van de opleiding Elektrotechniek voor de teamleider van Elektrotechniek van De Haagse Hogeschool om de gewenste profilering te kunnen realiseren. ACTIVITEITEN Vanuit de curriculum commissie van de opleiding Elektrotechniek wordt opdracht gegeven aan een apart team om het implementatievoorstel voor te bereiden. Hierin werken twee docent/onderzoekers samen met de teamleider en enkele extern specialisten. In vijf opeenvolgende stappen wordt op een top-down manier gewerkt aan 1. Formuleren competenties voor DC 2. Hoofdstromen curriculum inrichten 3. Uitwerken vakinhoudelijke gebieden Elektrotechniek (‘leeg vel papier’) 4. Koppelen opzet aan bezetting en kennis in het team en bij partners 5. Voorbereiden besluitvorming RESULTAAT Op deze wijze wordt een heldere visie ontwikkeld op het benodigde onderwijs om het onderwerp gelijkspanning gestructureerd aan te kunnen bieden. Daarbij gaat het om vakinhoudelijke kennis in vakken, met bijbehorende practica en projecten. Om deze kennis goed aan te bieden wordt nadrukkelijk ook de samenwerking met andere kennisinstellingen (zoals Zuyd Hogeschool en de TU-Delft) gezocht.
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.
Lectorate, part of NHL Stenden Hogeschool