This paper presents challenges in city logistics for circular supply chains of e-e-waste. Efficient e-waste management is one of the strategies to save materials, critical minerals, and precious metals. E-waste collection and recycling have gained attention recently due to lower collection and recycling rates. However, implementing circular urban supply chains is a significant economic transformation that can only work if coordination decisions are solved between the actors involved. On the one hand, this requires the implementation of efficient urban collection technologies, where waste collection companies collaborate with manufacturers, urban waste treatment specialists, and city logistics service providers supported by digital solutions for visibility and planning. On the other hand, it also requires implementing urban and regional ecosystems connected by innovative CO2-neutral circular city logistics systems. These systems must smoothly and sustainably manage the urban and regional flow of resources and data, often at a large scale and with interfaces between industrial processes, private, and public actors. This paper presents future research questions from a city logistics perspective based on a European project aimed at developing a blueprint for systemic solutions for the circularity of plastics from applications of rigid PU foams used as insulation material in refrigerators.
MULTIFILE
Research finds that the global market value of cargo bikes will hit 2.4 billion euros by 2031. Analysts with Future Market Insights assessing the growth of cargo bikes have placed the parcel courier industry as a key buyer of electric cargo bikes, forecasting that 43 per cent of sales could go to this industry. This growth is driven by city logistics trends, particularly as studies emerge showing the high efficiency and cost saving of the cargo bike versus the delivery van. It will not solely be direct incentives that drive uptake, however. The policy that restricts motoring and emissions is expected to be a key driver for businesses that seek profitability, with three-wheeled electric cargo bikes making up nearly half the market. The advance of e-bike technology has seen a strong rise in market share for assisted cargo bikes, now accounting for a 73 per cent market share. Potentially limiting the growth is the legislation governing the output and range of electric cargo bikes (FMI, 2021).To deal with the issues of faster delivery, clean delivery (low/zero emission) and less space in dense cities, the light electric freight vehicle (LEFV) can be–and is used more and more as–an innovative solution. The way logistics in urban areas is organized is being challenged, as the global growth of cities leads to more jobs, more businesses and more residents. As a result, companies, workers, residents and visitors demand more goods and produce more waste. More space for logistics activities in and around cities is at odds with the growing need for accommodation for people living and working in cities. Book: Innovations in Transport: Success, Failure and Societal Impacts
Municipalities play an important role in tackling city logistics related matters, having many instruments at hand. However, it is not self-evident that all municipalities use these instruments to their full potential. A method to measure city logistics performance of municipalities can help in creating awareness and guidance, to ultimately lead to a more sustainable environment for inhabitants and businesses. Subsequently, this research is focused on a maturity model as a tool to assess the maturity level of a municipality for its performance related city logistics process management. Various criteria for measuring city logistics performance are studied and based on that the model is populated through three focus fields (Technical, Social and Corporate, and Policy), branching out into six areas of development: Information and communication technology, urban logistics planning, Stakeholder communication, Public Private Partnerships, Subsidisation and incentivisation, and Regulations. The CL3M model was tested for three municipalities, namely, municipality of Utrecht, Den Bosch and Groningen. Through these maturity assessments it became evident the model required specificity complementary to the existing assessment interview, and thus a SWOT analysis should be added as a conclusion during the maturity assessment.
The developments of digitalization and automation in freight transport and logistics are expected to speed-up the realization of an adaptive, seamless, connected and sustainable logistics system. CATALYST determines the potential and impact of Connected Automated Transport (CAT) by testing and implementing solutions in a real-world environment. We experiment on smart yards and connected corridors, to answer research questions regarding supply chain integration, users, infrastructure, data and policy. Results are translated to overarching lessons on CAT implementations, and shared with potential users and related communities. This way, CATALYST helps logistic partners throughout the supply chain prepare for CAT and accelerates innovation.
The developments of digitalization and automation in freight transport and logistics are expected to speed-up the realization of an adaptive, seamless, connected and sustainable logistics system. CATALYST determines the potential and impact of Connected Automated Transport (CAT) by testing and implementing solutions in a real-world environment. We experiment on smart yards and connected corridors, to answer research questions regarding supply chain integration, users, infrastructure, data and policy. Results are translated to overarching lessons on CAT implementations, and shared with potential users and related communities. This way, CATALYST helps logistic partners throughout the supply chain prepare for CAT and accelerates innovation.
In 2021, Citython editions were held for the European cities of Eindhoven (Netherlands), Bilbao and Barcelona (Spain), Hamburg (Germany), and Lublin (Poland). Within this project, BUAS contributed to the organization of CITYTHON Eindhoven in cooperation with CARNET (an initiative by CIT UPC) and City of Eindhoven – an event which gives young talent the opportunity to work with mentors and experts for the development of innovative urban solutions. Participants of CITYTHON Eindhoven worked on three challenges:- Traffic safety in school zones - Travel to the campus- Make the city healthy The event took place between 18 May and 2 June 2021 with various experts, for example from ASML, City of Eindhoven and University of Amsterdam, giving inspirational talks and mentoring students throughout the ideation and solutions development process. The teams presented their solutions during the Dutch Technology Week and the winners were announced by Monique List-de Roos (Alderman Mobility and Transport, City of Eindhoven) on 2 June 2021. The role of BUAS within this project was to assist City of Eindhoven with the development of the challenges to be tackled by the participating teams, and find relevant speakers and mentors who would be supporting the students for the development of their solutions and jury members who would determine the winning teams. The project ended with a round table “Green and Safe Mobility for all: 5 Smart City(thon) Case studies” on November 17 organized as part of Smart City Expo World Congress 2021 in Barcelona. This project is funded by EIT Urban Mobility, an initiative of the European Institute of Innovation and Technology (EIT), a body of the European Union. EIT Urban Mobility acts to accelerate positive change on mobility to make urban spaces more livable. Learn more: eiturbanmobility.eu.Collaborating partnersCARNET (Lead organisation); Barcelona Institute of Technology for Habitat; Barcelona City Council; Bilbao City Hall; City of Hamburg; City of Eindhoven,; City of Lublin; Digital Hub Logistics Hamburg; Technical University of Catalonia, Tecnalia; UPC Technology Center.