At this moment, charging your electric vehicle is common good, however smart charging is still a novelty in the developing phase with many unknowns. A smart charging system monitors, manages and restricts the charging process to optimize energy consumption. The need for, and advantages of smart charging electric vehicles are clear cut from the perspective of the government, energy suppliers and sustainability goals. But what about the advantages and disadvantages for the people who drive electric cars? What opportunities are there to support the goals of the user to make smart charging desirable for them? By means of qualitative Co-design methods the underlying motives of early adaptors for joining a smart charging service were uncovered. This was done by first sensitizing the user about their current and past encounters with smart charging to make them more aware of their everyday experiences. This was followed by another generative method, journey mapping and in-depth interviews to uncover the core values that drove them to participate in a smart charging system. Finally, during two co-design sessions, the participants formed groups in which they were challenged to design the future of smart charging guided by their core values. The three main findings are as follows. Firstly, participants are looking for ways to make their sustainable behaviour visible and measurable for themselves. For example, the money they saved by using the smart charging system was often used as a scoreboard, more than it was about theactual money. Secondly, they were more willing to participate in smart charging and discharging (sending energy from their vehicle back to the grid) if it had a direct positive effect on someone close to them. For example, a retiree stated that he was more than willing to share the energy of his car with a neighbouring family in which both young parents work, making them unable to charge their vehicles at times when renewable energy is available in abundance. The third and last finding is interrelated with this, it is about setting the right example. The early adopters want to show people close to them that they are making an effort to do the right thing. This is known as the law of proximity and is well illustrated by a participant that bought a second-hand, first-generation Nissan Leaf with a range of just 80 km in the summer and even less in winter. It isn’t about buying the best or most convenient car but about showing the children that sometimes it takes effort to do the right thing. These results suggest that there are clear opportunities for suppliers of smart EV charging services to make it more desirable for users, with other incentives than the now commonly used method of saving money. The main takeaway is that early adopters have a desire for their sustainable behaviour to be more visible and tangible for themselves and their social environment. The results have been translated into preliminary design proposals in which the law of proximity is applied.
DOCUMENT
Electric vehicles and renewable energy sources are collectively being developed as a synergetic implementation for smart grids. In this context, smart charging of electric vehicles and vehicle-to-grid technologies are seen as a way forward to achieve economic, technical and environmental benefits. The implementation of these technologies requires the cooperation of the end-electricity user, the electric vehicle owner, the system operator and policy makers. These stakeholders pursue different and sometime conflicting objectives. In this paper, the concept of multi-objective-techno-economic-environmental optimisation is proposed for scheduling electric vehicle charging/discharging. End user energy cost, battery degradation, grid interaction and CO2 emissions in the home micro-grid context are modelled and concurrently optimised for the first time while providing frequency regulation. The results from three case studies show that the proposed method reduces the energy cost, battery degradation, CO2 emissions and grid utilisation by 88.2%, 67%, 34% and 90% respectively, when compared to uncontrolled electric vehicle charging. Furthermore, with multiple optimal solutions, in order to achieve a 41.8% improvement in grid utilisation, the system operator needs to compensate the end electricity user and the electric vehicle owner for their incurred benefit loss of 27.34% and 9.7% respectively, to stimulate participation in energy services.
DOCUMENT
As the Dutch electric vehicle (EV) fleet continues to expand, so will the amount of charging sessions increase. This expanding demand for energy will add on to the already existing strain on the grid, primarily during peak hours on workdays in the early morning and evening. This growing energy demand requires new methods to handle the charging of EVs, to distribute the available energy in the most effective way. Therefore, a large number of ‘smart charging’ initiatives have recently been developed, whereby the charging session of the EV is based on the conditions of the energy grid. However, the term smart charging is used for a variety of smart charging initiatives, often involving different optimization strategies and charging processes. For most practitioners, as well as academics, it is hard to distinguish the large range of smart charging initiatives initiated in recent years, how they differentiate from each other and how they contribute to a smarter charging infrastructure. This paper has the objective to provide an overview of smart charging initiatives in the Netherlands and develop a categorization of smart charging initiatives regarding objectives, proposed measures and intended contributions. We will do so by looking at initiatives that focus on smart charging at a household level, investigating the smart charging possibilities for EV owners who either make use of a private or (semi-)public charging point. The different smart charging initiatives will be analyzed and explicated in combination with a literature study, focusing on the different optimization strategies and requirements to smart charge an electric vehicle.
DOCUMENT
De noordelijke samenlevingen van zowel Nederland als Duitsland willen graag hun mobiliteit vergroenen. In dit kader is er een wens naar elektrische mobiliteit. Op het gebied van elektrische mobiliteit vinden momenteel zeer veel ontwikkelingen plaats. Niet alleen op het gebied van voertuig en de laadinfrastructuur maar ook breder. De voertuigen worden steeds slimmer (smart vehicle) en gaan steeds meer deel uitmaken van een slim energie netwerk (smart grid) en een slim verkeerssysteem (smart traffic). In dit complexe speelveld is het lastig om vast te stellen welke activiteiten ondernomen moeten worden om vergroeningsstappen op het gebied van elektrische mobiliteit te zetten. Dit onderzoek zal zich richten op identificatie van de nieuwe mogelijkheden (technische innovaties en nieuwe toepassingen) op het gebied van elektrische mobiliteit.
DOCUMENT
This article explores the applicability of smart grid concepts to the Dutch gas network by reflecting on the experience of the electricity sector.
DOCUMENT
Electric vehicles have penetrated the Dutch market, which increases the potential for decreased local emissions, the use and storage of sustainable energy, and the roll-out and use of electric car-sharing business models. This development also raises new potential issues such as increased electricity demand, a lack of social acceptance, and infrastructural challenges in the built environment. Relevant stakeholders, such as policymakers and service providers, need to align their values and prioritize these aspects. Our study investigates the prioritization of 11 Dutch decision-makers in the field of public electric vehicle charging. These decision-makers prioritized different indicators related to measurements (e.g., EV adoption rates or charge point profitability), organization (such as fast- or smart-charging), and developments (e.g., the development of mobility-service markets) using the best-worst method. The indicators within these categories were prioritized for three different scenario's in time. The results reveal that priorities will shift from EV adoption and roll-out of infrastructure to managing peak demand, using more sustainable charging techniques (such as V2G), and using sustainable energy towards 2030. Technological advancements and autonomous charging techniques will become more relevant in a later time period, around 2040. Environmental indicators (e.g., local emissions) were consistently valued low, whereas mobility indicators were valued differently across participants, indicating a lack of consensus. Smart charging was consistently valued higher than other charging techniques, independent of time period. The results also revealed that there are some distinct differences between the priorities of policymakers and service providers. Having a systematic overview of what aspects matter supports the policy discussion around EVs in the built environment.
DOCUMENT
At request of the MRA-E, G4 and ElaadNL HvA is researching the potential of Smart Charging. In this blog Youssef el Bouhassani pinpoints this potential.
LINK
While the Municipality of Amsterdam wants to expand the electric vehicle public charging infrastructure to reach carbon-neutral objectives, the Distribution System Operator cannot allow new charging stations where low-voltage transformers are reaching their maximum capacity. To solve this situation, a smart charging project called Flexpower is being tested in some districts. Charging power is limited during peak times to avoid grid congestion and, therefore, enable the expansion of charging infrastructure while deferring grid investments. This work simulates the implementation of the Flexpower strategy with high penetration of electric vehicles, considering dynamic and local power limits, to assess the impact on both the satisfaction of electric vehicle users and the business model of the Charging Point Operator. A stochastic approach, based on Gaussian Mixture Models, has been used to model different profiles of electric vehicle users using data from the Amsterdam public electric vehicle charging infrastructure. Several key performance indicators have been defined to assess the impact of such charging limitations on the different stakeholders. The results show that, while Amsterdam’s existing public charging infrastructure can host just twice the current electric vehicle demand, the application of Flexpower will enable the growth in charging stations without requiring grid upgrades. Even with 7 times more charging sessions, Flexpower could provide a power peak reduction of 57% while supplying 98% of the total energy required by electric vehicle users.
DOCUMENT
A smart charging profile was implemented on 39 public charging stations in Amsterdam on which the current level available for electric vehicle (EV) charging was limited during peak hours on the electricity grid (07:00-08:30 and 17:00-20:00) and was increased during the rest of the day. The impact of this profile was measured on three indicators: average charging power, amount of transferred energy and share of positively and negatively affected sessions. The results are distinguished for different categories of electric vehicles with different charging characteristics (number of phases and maximum current). The results depend heavily on this categorisation and are a realistic measurement of the impact of smart charging under real world conditions. The average charging power increased as a result of the new profile and a reduction in the amount of transferred energy was detected during the evening hours, causing outstanding demand which was solved at an accelerated rate after limitations were lifted. For the whole population, 4% of the sessions were positively affected (charged a larger volume of energy) and 5% were negatively affected. These numbers are dominated by the large share of plug-in hybrid electric vehicles (PHEVs) in Amsterdam which are technically not able to profit from the higher current levels. For new generation electric vehicles, 14% of the sessions were positively affected and the percentage of negatively affected sessions was 5%.
DOCUMENT
As Vehicle-to-Everything (V2X) communication technologies gain prominence, ensuring human safety from radiofrequency (RF) electromagnetic fields (EMF) becomes paramount. This study critically examines human RF exposure in the context of ITS-5.9 GHz V2X connectivity, employing a combination of numerical dosimetry simulations and targeted experimental measurements. The focus extends across Road-Side Units (RSUs), On-Board Units (OBUs), and, notably, the advanced vehicular technologies within a Tesla Model S, which includes Bluetooth, Long Term Evolution (LTE) modules, and millimeter-wave (mmWave) radar systems. Key findings indicate that RF exposure levels for RSUs and OBUs, as well as from Tesla’s integrated technologies, consistently remain below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) exposure guidelines by a significant margin. Specifically, the maximum exposure level around RSUs was observed to be 10 times lower than ICNIRP reference level, and Tesla’s mmWave radar exposure did not exceed 0.29 W/m2, well below the threshold of 10 W/m2 set for the general public. This comprehensive analysis not only corroborates the effectiveness of numerical dosimetry in accurately predicting RF exposure but also underscores the compliance of current V2X communication technologies with exposure guidelines, thereby facilitating the protective advancement of intelligent transportation systems against potential health risks.
MULTIFILE