Wereldwijd onderzoek: Hoe gebruiken nieuwsmedia social media? Jongeren lezen geen krant meer, ze kijken op hun smartphone die ze altijd bij de hand hebben. Binnen het lectoraat social media en reputatiemanagement van NHL hogeschool te Leeuwarden heeft een groep internationale studenten in 12 landen onderzoek gedaan. Hierbij hebben ze meer dan 150 social media sites bestudeerd van nieuws media. De resultaten maken deel uit van een internationaal onderzoek van NHL Hogeschool en Haaga Helia University. De onderzoeksvraag was: Wat speelt zich af in de nieuwsmedia? Persbureaus kunnen het overzicht gebruiken om hun social media te optimaliseren. En voor ieder die journalistiek een warm hart toedraagt is het interessante informatie over de nieuwsmedia in een overgangssituatie (2nd edition)
BACKGROUND: Blended physiotherapy, in which physiotherapy sessions and an online application are integrated, might support patients in taking an active role in the management of their chronic condition and may reduce disease related costs. The aim of this study was to evaluate the cost-effectiveness of a blended physiotherapy intervention (e-Exercise) compared to usual physiotherapy in patients with osteoarthritis of hip and/or knee, from the societal as well as the healthcare perspective.METHODS: This economic evaluation was conducted alongside a 12-month cluster randomized controlled trial, in which 108 patients received e-Exercise, consisting of physiotherapy sessions and a web-application, and 99 patients received usual physiotherapy. Clinical outcome measures were quality-adjusted life years (QALYs) according to the EuroQol (EQ-5D-3 L), physical functioning (HOOS/KOOS) and physical activity (Actigraph Accelerometer). Costs were measured using self-reported questionnaires. Missing data were multiply imputed and bootstrapping was used to estimate statistical uncertainty.RESULTS: Intervention costs and medication costs were significantly lower in e-Exercise compared to usual physiotherapy. Total societal costs and total healthcare costs did not significantly differ between groups. No significant differences in effectiveness were found between groups. For physical functioning and physical activity, the maximum probability of e-Exercise being cost-effective compared to usual physiotherapy was moderate (< 0.82) from both perspectives. For QALYs, the probability of e-Exercise being cost-effective compared to usual physiotherapy was 0.68/0.84 at a willingness to pay of 10,000 Euro and 0.70/0.80 at a willingness to pay of 80,000 Euro per gained QALY, from respectively the societal and the healthcare perspective.CONCLUSIONS: E-Exercise itself was significantly cheaper compared to usual physiotherapy in patients with hip and/or knee osteoarthritis, but not cost-effective from the societal- as well as healthcare perspective. The decision between both interventions can be based on the preferences of the patient and the physiotherapist.TRIAL REGISTRATION: NTR4224 (25 October 2013).
Background: Impaired upper extremity function due to muscle paresis or paralysis has a major impact on independent living and quality of life (QoL). Assistive technology (AT) for upper extremity function (i.e. dynamic arm supports and robotic arms) can increase a client’s independence. Previous studies revealed that clients often use AT not to their full potential, due to suboptimal provision of these devices in usual care. Objective: To optimize the process of providing AT for impaired upper extremity function and to evaluate its (cost-)effectiveness compared with care as usual. Methods: Development of a protocol to guide the AT provision process in an optimized way according to generic Dutch guidelines; a quasi-experimental study with non-randomized, consecutive inclusion of a control group (n = 48) receiving care as usual and of an intervention group (optimized provision process) (n = 48); and a cost-effectiveness and cost-utility analysis from societal perspective will be performed. The primary outcome is clients’ satisfaction with the AT and related services, measured with the Quebec User Evaluation of Satisfaction with AT (Dutch version; D-QUEST). Secondary outcomes comprise complaints of the upper extremity, restrictions in activities, QoL, medical consumption and societal cost. Measurements are taken at baseline and at 3, 6 and 9 months follow-up.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.INXCES will develop new innovative technological methods for risk assessment and mitigation of extreme hydroclimatic events and optimization of urban water-dependent ecosystem services at the catchment level, for a spectrum of rainfall events. It is widely acknowledged that extreme events such as floods and droughts are an increasing challenge, particularly in urban areas. The frequency and intensity of floods and droughts pose challenges for economic and social development, negatively affecting the quality of life of urban populations. Prevention and mitigation of the consequences of hydroclimatic extreme events are dependent on the time scale. Floods are typically a consequence of intense rainfall events with short duration. In relation to prolonged droughts however, a much slower timescale needs to be considered, connected to groundwater level reductions, desiccation and negative consequences for growing conditions and potential ground – and building stability.INXCES will take a holistic spatial and temporal approach to the urban water balance at a catchment scale and perform technical-scientific research to assess, mitigate and build resilience in cities against extreme hydroclimatic events with nature-based solutions.INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.
Cycling booms in many Dutch cities. While smart cycling innovations promise to increase cycling’s modal share in the (peri-)urban transport system even further, little is understood of their impact or cost and benefit. The “Smart Cycling Futures (SCF)” program investigates how smart cycling innovations ─ including ICT-enabled cycling innovations, infrastructures, and social innovations like new business models ─ contribute to more resilient and liveable Dutch urban regions. Cycling innovations benefit urban regions in terms of accessibility, equality, health, liveability, and decreasing CO2-emissions when socially well embedded. To facilitate a transition to a sustainable future that respond to pressing issues, the SCF research project runs urban living labs in close collaboration with key stakeholders to develop transdisciplinary insights in the conditions needed for upscaling smart-cycling initiatives. Each living lab involving real-world experiments responds to the urgent challenges that urban regions and their stakeholders face today. The proposed research sub-programs focus on institutional dynamics, entrepreneurial strategies, governance and the socio-spatial conditions for smart cycling. Going beyond analysis, we also assess the economic, social, and spatial impacts of cycling on urban regions. The research program brings together four Dutch regions through academic institutions (three general and one applied-science universities); governmental authorities (urban and regional); and market players (innovative entrepreneurs). Together, they answer practice-based questions in a transdisciplinary and problem-oriented fashion. Research in the four regions generates both region-specific and universally applicable findings. Finally, SCF uses its strong research-practice network around cycling to co-create the research and run an outreach program.