INTRODUCTION: It is difficult to adjust fluid balance adequately in patients with severe burns due to various physical changes. B-type natriuretic peptide (BNP) is emerging as a potential marker of hydration state. Proteinuria is used as a predictor of outcome in severe illness and might correlate to systemic capillary leakage. This study investigates whether combining BNP and proteinuria can be used as a guide for individualized resuscitation and as a predictor of outcome in patients with severe burns.METHODS: From 2006 to 2009, 38 consecutive patients (age 47 ± 15 years, 74% male) with severe burns were included and followed for 20 days. All had normal kidney function at admission. BNP and proteinuria were routinely measured. Ordered and actually administered fluid resuscitation volumes were recorded. The Sequential Organ Failure Assessment (SOFA) score was used as the measure of outcome.RESULTS: BNP increased during follow-up, reaching a plateau level at Day 3. Based on median BNP levels at Day 3, patients were divided into those with low BNP and those with high BNP levels. Both groups had comparable initial SOFA scores. Patients with high BNP received less fluid from Days 3 to 10. Furthermore, patients with a high BNP at Day 3 had less morbidity, reflected by lower SOFA scores on the following days. To minimize effects of biological variability, proteinuria on Days 1 and 2 was averaged. By dividing the patients based on median BNP at Day 3 and median proteinuria, patients with high BNP and low proteinuria had significantly lower SOFA scores during the entire follow-up period compared to those patients with low BNP and high proteinuria.CONCLUSIONS: Patients with higher BNP levels received less fluid. This might be explained by a lower capillary leakage in these patients, resulting in more intravascular fluid and consequently an increase in BNP. In combination with low proteinuria, possibly reflecting minimal systemic capillary leakage, a high BNP level was associated with a better outcome. BNP and proteinuria have prognostic potential in severely burned patients and may be used to adjust individual resuscitation.
BackgroundHigh-flow nasal oxygen (HFNO) is increasingly used in patients with acute hypoxemic respiratory failure. It is uncertain whether a broadened Berlin definition of acute respiratory distress syndrome (ARDS), in which ARDS can be diagnosed in patients who are not receiving ventilation, results in similar groups of patients receiving HFNO as in patients receiving ventilation.MethodsWe applied a broadened definition of ARDS in a multicenter, observational study in adult critically ill patients with acute hypoxemic respiratory failure due to coronavirus disease 2019 (COVID-19), wherein the requirement for a minimal level of 5 cm H2O PEEP with ventilation is replaced by a minimal level of airflow rate with HFNO, and compared baseline characteristics and outcomes between patients receiving HFNO and patients receiving ventilation. The primary endpoint was ICU mortality. We also compared outcomes in risk for death groups using the PaO2/FiO2 cutoffs as used successfully in the original definition of ARDS. Secondary endpoints were hospital mortality; mortality on days 28 and 90; need for ventilation within 7 days in patients that started with HFNO; the number of days free from HFNO or ventilation; and ICU and hospital length of stay.ResultsOf 728 included patients, 229 patients started with HFNO and 499 patients with ventilation. All patients fulfilled the broadened Berlin definition of ARDS. Patients receiving HFNO had lower disease severity scores and lower PaO2/FiO2 than patients receiving ventilation. ICU mortality was lower in receiving HFNO (22.7 vs 35.6%; p = 0.001). Using PaO2/FiO2 cutoffs for mild, moderate and severe arterial hypoxemia created groups with an ICU mortality of 16.7%, 22.0%, and 23.5% (p = 0.906) versus 19.1%, 37.9% and 41.4% (p = 0.002), in patients receiving HFNO versus patients receiving ventilation, respectively.ConclusionsUsing a broadened definition of ARDS may facilitate an earlier diagnosis of ARDS in patients receiving HFNO; however, ARDS patients receiving HFNO and ARDS patients receiving ventilation have distinct baseline characteristics and mortality rates.Trial registration: The study is registered at ClinicalTrials.gov (identifier NCT04719182).
MULTIFILE
Ambient activity monitoring systems produce large amounts of data, which can be used for health monitoring. The problem is that patterns in this data reflecting health status are not identified yet. In this paper the possibility is explored of predicting the functional health status (the motor score of AMPS = Assessment of Motor and Process Skills) of a person from data of binary ambient sensors. Data is collected of five independently living elderly people. Based on expert knowledge, features are extracted from the sensor data and several subsets are selected. We use standard linear regression and Gaussian processes for mapping the features to the functional status and predict the status of a test person using a leave-oneperson-out cross validation. The results show that Gaussian processes perform better than the linear regression model, and that both models perform better with the basic feature set than with location or transition based features. Some suggestions are provided for better feature extraction and selection for the purpose of health monitoring. These results indicate that automated functional health assessment is possible, but some challenges lie ahead. The most important challenge is eliciting expert knowledge and translating that into quantifiable features.