Residential electricity distribution grid capacity is based on the typical peak load of a house and the load simultaneity factor. Historically, these values have remained predictable, but this is expected to change due to increasing electric heating using heat pumps and rooftop solar panel electricity generation. It is currently unclear how this increase in electrification will impact household peak load and load simultaneity, and hence the required grid capacity of residential electricity distribution grids. To gain better insight, transformer and household load measurements were taken in an all-electric neighborhood over a period of three years. These measurements were analyzed to determine how heat pumps and solar panels will alter peak load and load simultaneity, and hence grid capacity requirements. The impacts of outdoor effective temperature and solar panel orientation were also analyzed. Moreover, the potential for smart grids to reduce grid capacity requirements was examined.
DOCUMENT
Renewable energy sources have an intermittent character that does not necessarily match energy demand. Such imbalances tend to increase system cost as they require mitigation measures and this is undesirable when available resources should be focused on increasing renewable energy supply. Matching supply and demand should therefore be inherent to early stages of system design, to avoid mismatch costs to the greatest extent possible and we need guidelines for that. This paper delivers such guidelines by exploring design of hybrid wind and solar energy and unusual large solar installation angles. The hybrid wind and solar energy supply and energy demand is studied with an analytical analysis of average monthly energy yields in The Netherlands, Spain and Britain, capacity factor statistics and a dynamic energy supply simulation. The analytical focus in this paper differs from that found in literature, where analyses entirely rely on simulations. Additionally, the seasonal energy yield profile of solar energy at large installation angles is studied with the web application PVGIS and an hourly simulation of the energy yield, based on the Perez model. In Europe, the energy yield of solar PV peaks during the summer months and the energy yield of wind turbines is highest during the winter months. As a consequence, three basic hybrid supply profiles, based on three different mix ratios of wind to solar PV, can be differentiated: a heating profile with high monthly energy yield during the winter months, a flat or baseload profile and a cooling profile with high monthly energy yield during the summer months. It is shown that the baseload profile in The Netherlands is achieved at a ratio of wind to solar energy yield and power of respectively Ew/Es = 1.7 and Pw/Ps = 0.6. The baseload ratio for Spain and Britain is comparable because of similar seasonal weather patterns, so that this baseload ratio is likely comparable for other European countries too. In addition to the seasonal benefits, the hybrid mix is also ideal for the short-term as wind and solar PV adds up to a total that has fewer energy supply flaws and peaks than with each energy source individually and it is shown that they are seldom (3%) both at rated power. This allows them to share one cable, allowing “cable pooling”, with curtailment to -for example-manage cable capacity. A dynamic simulation with the baseload mix supply and a flat demand reveals that a 100% and 75% yearly energy match cause a curtailment loss of respectively 6% and 1%. Curtailment losses of the baseload mix are thereby shown to be small. Tuning of the energy supply of solar panels separately is also possible. Compared to standard 40◦ slope in The Netherlands, facade panels have smaller yield during the summer months, but almost equal yield during the rest of the year, so that the total yield adds up to 72% of standard 40◦ slope panels. Additionally, an hourly energy yield simulation reveals that: façade (90◦) and 60◦ slope panels with an inverter rated at respectively 50% and 65% Wp, produce 95% of the maximum energy yield at that slope. The flatter seasonal yield profile of “large slope panels” together with decreased peak power fits Dutch demand and grid capacity more effectively.
DOCUMENT
The rapid implementation of large scale floating solar panels has consequences to water quality and local ecosystems. Environmental impacts depend on the dimensions, design and proportions of the system in relation to the size of the surface water, as well as the characteristics of the water system (currents, tidal effects) and climatic conditions. There is often no time (and budget) for thorough research into these effects on ecology and water quality. A few studies have addressed the potential impacts of floating solar panels, but often rely on models without validation with in situ data. In this work, water quality sensors continuously monitored key water quality parameters at two different locations: (i) underneath a floating solar park; (ii) at a reference location positioned in open water. An underwater drone was used to obtain vertical profiles of water quality and to collect underwater images. The results showed little differences in the measured key water quality parameters below the solar panels. The temperature at the upper layers of water was lower under the solar panels, and there were less detected temperature fluctuations. A biofouling layer on the floating structure was visible in the underwater images a few months after the construction of the park
DOCUMENT
The application of DC grids is gaining more attention in office applications. Especially since powering an office desk would not require a high power connection to the main AC grid but could be made sustainable using solar power and battery storage. This would result in fewer converters and further advanced grid utilization. In this paper, a sustainable desk power application is described that can be used for powering typical office appliances such as computers, lighting, and telephones. The desk will be powered by a solar panel and has a battery for energy storage. The applied DC grid includes droop control for power management and can either operate stand-alone or connected to other DC-desks to create a meshed-grid system. A dynamic DC nano-grid is made using multiple self-developed half-bridge circuit boards controlled by microcontrollers. This grid is monitored and controlled using a lightweight network protocol, allowing for online integration. Droop control is used to create dynamic power management, allowing automated control for power consumption and production. Digital control is used to regulate the power flow, and drive other applications, including batteries and solar panels. The practical demonstrative setup is a small-sized desktop with applications built into it, such as a lamp, wireless charging pad, and laptop charge point for devices up to 45W. User control is added in the form of an interactive remote wireless touch panel and power consumption is monitored and stored in the cloud. The paper includes a description of technical implementation as well as power consumption measurements.
DOCUMENT
Videoverslag waarin de aanpak, maatschappelijke relevantie en belangrijkste uitkomsten van het RAAK Onderzoek 'Making GREEN Energy Sources Greener' worden besproken. In dit onderzoek is op verschillende drijvende zonneparken gekeken naar effecten van de installaties op waterkwaliteit en ecologie. De resultaten hiervan vormen aanleiding voor vervolgonderzoeken die inmiddels zijn gestart
YOUTUBE
Excess of renewable electricity from wind turbines or solar panels is used for electrolysis of water. To store this renewable energy as methane, the hydrogen is fed to an anaerobic digester to stimulate biological methanation by hydrogenotrophic methanogens. This workpackage focusses on the best ways for hydrogen delivery and the community changes in a biomethanation reactor as a result of hydrogen supply.
DOCUMENT
Machine learning models have proven to be reliable methods in classification tasks. However, little research has been conducted on the classification of dwelling characteristics based on smart meter and weather data before. Gaining insights into dwelling characteristics, which comprise of the type of heating system used, the number of inhabitants, and the number of solar panels installed, can be helpful in creating or improving the policies to create new dwellings at nearly zero-energy standard. This paper compares different supervised machine learning algorithms, namely Logistic Regression, Support Vector Machine, K-Nearest Neighbor, and Long-short term memory, and methods used to correctly implement these algorithms. These methods include data pre-processing, model validation, and evaluation. Smart meter data, which was used to train several machine learning algorithms, was provided by Groene Mient. The models that were generated by the algorithms were compared on their performance. The results showed that the Long-short term memory performed the best with 96% accuracy. Cross Validation was used to validate the models, where 80% of the data was used for training purposes and 20% was used for testing purposes. Evaluation metrics were used to produce classification reports, which indicates that the Long-short term memory outperforms the compared models on the evaluation metrics for this specific problem.
DOCUMENT
Droop control is used for power management in DC grids. Based on the level of the DC grid voltage, the amount of power regulated to or from the appliance is regulated such, that power management is possible. The Universal 4 Leg is a laboratory setup for studying the functionality of a grid manager for power management. It has four independent outputs that can be regulated with pulse width modulation to control the power flow between the DC grid and for example, a rechargeable battery, solar panel or any passive load like lighting or heating.
DOCUMENT
Citizen participation in local renewable energy projects is often promoted as many suppose it to be a panacea for the difficulties that are involved in the energy transition process. Quite evidently, it is not; there is a wide variety of visions, ideologies and interests related to an ‘energy transition’. Such a variety is actually a precondition for a stakeholder participation process, as stakeholder participation only makes sense if there is ‘something at stake’. Conflicting viewpoints, interests and debates are the essence of participation. The success of stakeholder participation implies that these differences are acknowledged, and discussed, and that this has created mutual understanding among stakeholders. It does not necessarily create ‘acceptance’. Renewable energy projects often give rise to local conflict. The successful implementation of local renewable energy systems depends on the support of the local social fabric. While at one hand decisions to construct wind turbines in specific regions trigger local resistance, the opposite also occurs! Solar parks sometimes create a similar variation: Various communities try to prevent the construction of solar parks in their vicinity, while other communities proudly present their parks. Altogether, local renewable energy initiatives create a rather chaotic picture, if regarded from the perspective of government planning. However, if we regard the successes, it appears the top down initiatives are most successful in areas with a weak social fabric, like industrial areas, or rather recently reclaimed land. Deeply rooted communities, virtually only have successful renewable energy projects that are more or less bottom up initiatives. This paper will first sketch why participation is important, and present a categorisation of processes and procedures that could be applied. It also sketches a number of myths and paradoxes that might occur in participation processes. ‘Compensating’ individuals and/or communities to accept wind turbines or solar parks is not sufficient to gain ‘acceptance’. A basic feature of many debates on local renewable energy projects is about ‘fairness’. The implication is that decision-making is neither on pros and cons of various renewable energy technologies as such, nor on what citizens are obliged to accept, but on a fair distribution of costs and benefits. Such discussions on fairness cannot be short cut by referring to legal rules, scientific evidence, or to standard financial compensations. History plays a role as old feelings of being disadvantaged, both at individual and at group level, might re-emerge in such debates. The paper will provide an overview of various local controversies on renewable energy initiatives in the Netherlands. It will argue that an open citizen participation process can be organized to work towards fair decisions, and that citizens should not be addressed as greedy subjects, trying to optimise their own private interests, but as responsible persons.
DOCUMENT
In practice, faults in building installations are seldom noticed because automated systems to diagnose such faults are not common use, despite many proposed methods: they are cumbersome to apply and not matching the way of thinking of HVAC engineers. Additionally, fault diagnosis and energy performance diagnosis are seldom combined, while energy wastage is mostly a consequence of component, sensors or control faults. In this paper new advances on the 4S3F diagnose framework for automated diagnostic of energy waste in HVAC systems are presented. The architecture of HVAC systems can be derived from a process and instrumentation diagram (P&ID) usually set up by HVAC designers. The paper demonstrates how all possible faults and symptoms can be extracted on a very structured way from the P&ID, and classified in 4 types of symptoms (deviations from balance equations, operational states, energy performances or additional information) and 3 types of faults (component, control and model faults). Symptoms and faults are related to each other through Diagnostic Bayesian Networks (DBNs) which work as an expert system. During operation of the HVAC system the data from the BMS is converted to symptoms, which are fed to the DBN. The DBN analyses the symptoms and determines the probability of faults. Generic indicators are proposed for the 4 types of symptoms. Standard DBN models for common components, controls and models are developed and it is demonstrated how to combine them in order to represent the complete HVAC system. Both the symptom and the fault identification parts are tested on historical BMS data of an ATES system including heat pump, boiler, solar panels, and hydronic systems. The energy savings resulting from fault corrections are estimated and amount 25%. Finally, the 4S3F method is extended to hard and soft sensor faults. Sensors are the core of any FDD system and any control system. Automated diagnostic of sensor faults is therefore essential. By considering hard sensors as components and soft sensors as models, they can be integrated into the 4S3F method.
DOCUMENT