Aim: We aim to gain insight into the interaction between challenging behavior as shown by individuals with an intellectual impairment, and space, and to explore the possibilities of using routinely collected data to this end.Background: Research on challenging behavior shown by intellectually impaired individuals links their behavior to context, which includes space. Unfortunately, research about this link is hard to conduct, since these individuals may have difficulties expressing themselves verbally and react extremely to sensory stimuli.Method: We conducted a single-case study, focusing on a Dutch very-intensive care facility. We analyzed data routinely collected by the healthcare organization in search of time-space configurations that provide insights into the resident–space interaction. As sensitizing concepts, we used three different contexts the residents interact with—space, people, and activities.Findings: The study exemplified reported interactions that were direct, for example, between the residents and the spatial context, and indirect, for example, through other contexts (people and activities). Space impacts on residents’ senses intensely and acts as a lightning rod for their perceived stress. People also influence residents substantially. Caregivers may both have positive or adverse effects, for example, absenteeism or schedule change. Co-residents may trigger challenging behavior directly by a mere presence or transfer of their stress. Transitions between activities cause unpredictability and are triggers for residents, which interact with space.Conclusions: Living environments providing choice in nearness to the caregiver and distance to co-residents “high in tension,” lowering thresholds for transitions, and facilitating predictability would be beneficial for intellectually impaired individuals showing challenging behavior.
DOCUMENT
The Maritime Spatial Planning (MSP) Challenge simulation platform helps planners and stakeholders understand and manage the complexity of MSP. In the interactive simulation, different data layers covering an entire sea region can be viewed to make an assessment of the current status. Users can create scenarios for future uses of the marine space over a period of several decades. Changes in energy infrastructure, shipping, and the marine environment are then simulated, and the effects are visualized using indicators and heat maps. The platform is built with advanced game technology and uses aspects of role-play to create interactive sessions; it can thus be referred to as serious gaming. To calculate and visualize the effects of planning decisions on the marine ecology, we integrated the Ecopath with Ecosim (EwE) food web modeling approach into the platform. We demonstrate how EwE was connected to MSP, considering the range of constraints imposed by running scientific software in interactive serious gaming sessions while still providing cascading ecological feedback in response to planning actions. We explored the connection by adapting two published ecological models for use in MSP sessions. We conclude with lessons learned and identify future developments of the simulation platform.
MULTIFILE
Blended behavior change interventions combine therapeutic guidance with online care. This new way of delivering health care is supposed to stimulate patients with chronic somatic disorders in taking an active role in their disease management. However, knowledge about the effectiveness of blended behavior change interventions and how they should be composed is scattered. This comprehensive systematic review aimed to provide an overview of characteristics and effectiveness of blended behavior change interventions for patients with chronic somatic disorders.
LINK
The SPRONG group, originating from the CoE KennisDC Logistiek, focuses on 'Low Impact in Lastmile Logistics' (LILS). The LILS group conducts practical research with local living labs and learning communities. There is potential for more collaboration and synergy for nationwide scaling of innovations, which is currently underutilized. LILS aims to make urban logistics more sustainable and facilitate necessary societal transitions. This involves expanding the monodisciplinary and regional scope of CoE KennisDC Logistiek to a multidisciplinary and supra-regional approach, incorporating expertise in spatial planning, mobility, data, circularity, AI, behavior, and energy. The research themes are:- Solutions in scarce space aiming for zero impact;- Influencing behavior of purchasers, recipients, and consumers;- Opportunities through digitalization.LILS seeks to increase its impact through research and education beyond its regions. Collaboration between BUas, HAN, HR, and HvA creates more critical mass. LILS activities are structured around four pillars:- Developing a joint research and innovation program in a roadmap;- Further integrating various knowledge domains on the research themes;- Deepening methodological approaches, enhancing collaboration between universities and partners in projects, and innovating education (LILS knowledge hub);- Establishing an organizational excellence program to improve research professionalism and quality.These pillars form the basis for initiating and executing challenging, externally funded multidisciplinary research projects. LILS is well-positioned in regions where innovations are implemented and has a strong national and international network and proven research experience.Societal issue:Last-mile logistics is crucial due to its visibility, small deliveries, high costs, and significant impact on emissions, traffic safety, and labor hours. Lastmile activities are predicted to grow a 20% growth in the next decade. Key drivers for change include climate agreements and energy transitions, urban planning focusing on livability, and evolving retail landscapes and consumer behavior. Solutions involve integrating logistics with spatial planning, influencing purchasing behavior, and leveraging digitalization for better data integration and communication. Digital twins and the Physical Internet concept can enhance efficiency through open systems, data sharing, asset sharing, standardization, collaboration protocols, and modular load units.Key partners: Buas, HR, HAN, HvAPartners: TNO, TU Delft, Gemeente Rotterdam, Hoger Onderwijs Drechtsteden, Significance, Metropolitan Hub System, evofenedex, Provincie Gelderland, Duurzaam Bereikbaar Heijendaal, Gemeente Alphen aan den Rijn, Radboud Universiteit, I&W - DMI, DHL, TLN, Noorderpoort, Fabrications, VUB, Smartwayz, RUG, Groene Metropoolregio.
Socio-economic pressures on coastal zones are on the rise worldwide, leaving increasingly less room for natural coastal change without affecting humans. The challenge is to find ways for social and natural systems to co-exist, co-develop and create synergies. The recent implementation of multi-functional, nature-based solutions (NBS) on the sandy Dutch coast seem to offer great potential in that respect. Surprisingly, the studies evaluating these innovative solutions paid little attention to how the social and natural systems interact in the NBS-modified coastal landscapes and if these interactions strengthen or weaken the primary functions of the NBS. It is not clear whether the objectives to improve coastal resilience and spatial quality will be met throughout the lifetime of the intervention. In the proposed project we will investigate the socio-bio-physical dynamics of anthropogenic sandy shores applying a Living Lab approach, documenting and analyzing interactions between evolving anthropogenic shores (Sand Motor and Hondsbossche Duinen, Fig.1) and people that use and manage these NBS-modified landscapes. Socio-bio-physical interactions will be investigated at various scales, and consequences for the long-term functionality of the NBS will be assessed, by coupling an agent-based social model and a cellular automata landscape model. By studying the behavior of the coupled system we aim to identify limits to, and optima in, multi-functionality of the NBS design, and will study how various stakeholders can influence the development of the NBS in desired directions with respect to primary NBS functions, including social and ecological goals. Together with consortium partners from public and private sectors we will co-create guidelines for management and maintenance of multifunctional NBS and design procedures and visualization tools for intervention design.
The Hereon team has expressed interest in the use of the PO platform for the virtualization of the (hydro)dynamic behavior of offshore wind farms, in particular regarding turbidity around wind turbines. BUas has developed the Procedural Ocean (PO) platform. The platform uses procedural content generation (AI) for data-driven 3D virtualization of complex marine and maritime environments, with elements such as geo-environment (bathymery, etc.), geo-physics (weather conditions, waves), wind farms, aquaculture, shipping, ecology, and more. The virtual and immersive environment in the game engine Unreal supports advanced (game-like) user interaction for policy-oriented learning (marine spatial planning), ocean management, and decision making. We therefore propose a joint pilot Research and Development (R&D) project to explore, demonstrate and validate how a gridded dataset provided by Hereon can show the dynmics around wind farm monopiles. Furthermore, we can explore interactivity with the engineering and design of the turbine and the multiplication of the turbine design to compose a wind farm. Client: Hereon (The Helmholtz-Zentrum Hereon is a non-profit making research institute )