The impact of organized youth sport on youth development depends on various conditions in the pedagogical climate, such as how sport is delivered by youth sport coaches. While this is broadly acknowledged and provides a basis to improve youth sport and its developmental outcomes, little is known about the pedagogical perspectives of youth coaches on their practice. This study uses semi-structured interviews with 32 youth sport coaches in diverse youth sport contexts in the Netherlands. Reflexive data analysis is employed to garner insights into coaches’ role perceptions, coaching goals, and underlying values. The findings show that while youth coaches focus on sport-centered activities, many foreground non-sport dimensions such as life mentoring and working towards social inclusion as critical elements of their work, reflected in five pedagogically-oriented goals: discipline, autonomy, resilience, social abilities, and aspirations. Underlying these goals are pedagogical values such as building and maintaining caring relationships with participants. These goals and values echo scientific literature on pedagogical sport climate conditions (e.g. positive youth development), and challenge notions of youth sport as a performance-oriented and uncaring setting. The results contribute to existing knowledge about youth coaches’ pedagogical orientations, and inform the development of strategies to stimulate positive sport practices and developmental outcomes for participants.
This study investigated potential risk factors (coping, perfectionism, and self-regulation) for substantial injuries in contemporary dance students using a prospective cohort design, as high-quality studies focusing on mental risk factors for dance injuries are lacking. Student characteristics (age, sex, BMI, educational program, and history of injury) and psychological constructs (coping, perfectionism, and self-regulation) were assessed using the Performing artist and Athlete Health Monitor (PAHM), a web-based system. Substantial injuries were measured with the Oslo Sports Trauma Research Center (OSTRC) Questionnaire on Health Problems and recorded on a monthly basis as part of the PAHM system. Univariate and multivariate logistic regression analyses were conducted to test the associations between potential risk factors (i.e., student characteristics and psychological constructs) and substantial injuries. Ninety-nine students were included in the analyses. During the academic year 2016/2017, 48 students (48.5%) reported at least one substantial injury. Of all factors included, coping skills (OR: 0.91; 95% CI: 0.84–0.98), age (OR: 0.67; 95% CI: 0.46–0.98), and BMI (OR: 1.38; 95% CI: 1.05–1.80) were identified as significant risk factors in the multivariate analysis. The model explained 24% of the variance in the substantial injury group. Further prospective research into mental risk factors for dance injuries with larger sample sizes is needed to develop preventive strategies. Yet, dance schools could consider including coping skills training as part of injury prevention programs and, perhaps, providing special attention to younger dancers and those with a higher BMI through transitional programs to assist them in managing the stress they experience throughout their (academic) career.
Background Running-related injuries (RRIs) can be considered the primary enemy of runners. Most literature on injury prediction and prevention overlooks the mental aspects of overtraining and under-recovery, despite their potential role in injury prediction and prevention. Consequently, knowledge on the role of mental aspects in RRIs is lacking. Objective To investigate mental aspects of overtraining and under-recovery by means of an online injury prevention programme. Methods and analysis The ‘Take a Mental Break!’ study is a randomised controlled trial with a 12 month follow-up. After completing a web-based baseline survey, half and full marathon runners were randomly assigned to the intervention group or the control group. Participants of the intervention group obtained access to an online injury prevention programme, consisting of a running-related smartphone application. This app provided the participants of the intervention group with information on how to prevent overtraining and RRIs with special attention to mental aspects. The primary outcome measure is any self-reported RRI over the past 12 months. Secondary outcome measures include vigour, fatigue, sleep and perceived running performance. Regression analysis will be conducted to investigate whether the injury prevention programme has led to a lower prevalence of RRIs, better health and improved perceived running performance. Ethics and dissemination The Medical Ethics Committee of the University Medical Center Utrecht, the Netherlands, has exempted the current study from ethical approval (reference number: NL64342.041.17). Results of the study will be communicated through scientific articles in peer-reviewed journals, scientific reports and presentations on scientific conferences.
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
Ballet en moderne dans zijn een vorm van topsport. De druk op dansers is enorm. Lange en intensieve werkdagen, veel reizen en verschillende werkplekken maken het lastig om lichaam en geest goed te verzorgen. Hierdoor liggen blessures en mentale klachten op de loer. Nederlandse dansgezelschappen willen meer aandacht gaan besteden aan preventieve maatregelen om fysieke en mentale problemen bij hun dansers te voorkomen. Het ontbreekt hen echter aan kennis en kunde om dit innovatieve vraagstuk op te kunnen pakken. Het Nationale Ballet en het Scapino Ballet hebben het lectoraat Performing Arts Medicine van Codarts (Hogeschool voor de Kunsten Rotterdam) benaderd om antwoord te krijgen op de vraag hoe dansers op de hoogste podia, op gezonde wijze, hun beste performance kunnen laten zien. Gezamenlijk is deze praktijkvraag omgevormd naar drie onderzoeksdoelstellingen: 1. Opstellen van meetinstrumenten om de fysieke en mentale gezondheid van dansers te screenen en te monitoren; 2. Ontwerpen van een web-based systeem dat automatisch en real-time informatie uit de ontwikkelde meetinstrumenten kan inlezen, analyseren en interpreteren; 3. Ontwikkelen van een Fit to Perform protocol dat aanbevelingen geeft ten aanzien van het verbeteren van de fysieke en mentale gesteldheid van de danser. Het consortium bestaat uit de volgende organisaties: - Praktijkgerichte onderzoeksinstellingen: Codarts Rotterdam en Hogeschool van Amsterdam; - Universiteiten: ErasmusMC, Technische Universiteit Eindhoven en Vrije Universiteit Amsterdam; - Praktijkinstellingen: Het Nationale Ballet en het Scapino Ballet; - Overige instellingen: het Nederlands Paramedisch Instituut (NPi) en het Nationale Centrum Performing Arts (NCPA). Bij de samenstelling van het consortium is gekozen voor een goede mix tussen praktijkorganisaties, onderzoeksinstituten en onderwijsinstellingen. Daarnaast is er sprake van cross-sectorale samenwerking doordat kennis vanuit de podiumkunsten, sport, gezondheidszorg, onderwijs en technologie met elkaar verbonden wordt.
Despite the recognized benefits of running for promoting overall health, its widespread adoption faces a significant challenge due to high injury rates. In 2022, runners reported 660,000 injuries, constituting 13% of the total 5.1 million sports-related injuries in the Netherlands. This translates to a disturbing average of 5.5 injuries per 1,000 hours of running, significantly higher than other sports such as fitness (1.5 injuries per 1,000 hours). Moreover, running serves as the foundation of locomotion in various sports. This emphasizes the need for targeted injury prevention strategies and rehabilitation measures. Recognizing this social issue, wearable technologies have the potential to improve motor learning, reduce injury risks, and optimize overall running performance. However, unlocking their full potential requires a nuanced understanding of the information conveyed to runners. To address this, a collaborative project merges Movella’s motion capture technology with Saxion’s expertise in e-textiles and user-centered design. The result is the development of a smart garment with accurate motion capture technology and personalized haptic feedback. By integrating both sensor and actuator technology, feedback can be provided to communicate effective risks and intuitive directional information from a user-centered perspective, leaving visual and auditory cues available for other tasks. This exploratory project aims to prioritize wearability by focusing on robust sensor and actuator fixation, a suitable vibration intensity and responsiveness of the system. The developed prototype is used to identify appropriate body locations for vibrotactile stimulation, refine running styles and to design effective vibration patterns with the overarching objective to promote motor learning and reduce the risk of injuries. Ultimately, this collaboration aims to drive innovation in sports and health technology across different athletic disciplines and rehabilitation settings.