Car use in the sprawled urban region of Noord‐Brabant is above the Dutch average. Does this reflect car dependency due to the lack of competitive alternative modes? Or are there other factors at play, such as differences in preferences? This article aims to determine the nature of car use in the region and explore to what extent this reflects car dependency. The data, comprising 3,244 respondents was derived from two online questionnaires among employees from the High‐Tech Campus (2018) and the TU/e‐campus (2019) in Eindhoven. Travel times to work by car, public transport, cycling, and walking were calculated based on the respondents’ residential location. Indicators for car dependency were developed using thresholds for maximum commuting times by bicycle and maximum travel time ratios between public transport and car. Based on these thresholds, approximately 40% of the respondents were categorised as car‐dependent. Of the non‐car‐dependent respondents, 31% use the car for commuting. A binomial logit model revealed that higher residential densities and closer proximity to a railway station reduce the odds of car commuting. Travel time ratios also have a significant influence on the expected directions. Mode choice preferences (e.g., comfort, flexibility, etc.) also have a significant, and strong, impact. These results highlight the importance of combining hard (e.g., improvements in infrastructure or public transport provi-sion) and soft (information and persuasion) measures to reduce car use and car dependency in commuting trips.
MULTIFILE
Research finds that the global market value of cargo bikes will hit 2.4 billion euros by 2031. Analysts with Future Market Insights assessing the growth of cargo bikes have placed the parcel courier industry as a key buyer of electric cargo bikes, forecasting that 43 per cent of sales could go to this industry. This growth is driven by city logistics trends, particularly as studies emerge showing the high efficiency and cost saving of the cargo bike versus the delivery van. It will not solely be direct incentives that drive uptake, however. The policy that restricts motoring and emissions is expected to be a key driver for businesses that seek profitability, with three-wheeled electric cargo bikes making up nearly half the market. The advance of e-bike technology has seen a strong rise in market share for assisted cargo bikes, now accounting for a 73 per cent market share. Potentially limiting the growth is the legislation governing the output and range of electric cargo bikes (FMI, 2021).To deal with the issues of faster delivery, clean delivery (low/zero emission) and less space in dense cities, the light electric freight vehicle (LEFV) can be–and is used more and more as–an innovative solution. The way logistics in urban areas is organized is being challenged, as the global growth of cities leads to more jobs, more businesses and more residents. As a result, companies, workers, residents and visitors demand more goods and produce more waste. More space for logistics activities in and around cities is at odds with the growing need for accommodation for people living and working in cities. Book: Innovations in Transport: Success, Failure and Societal Impacts
DOCUMENT