Using stable isotope techniques, this study shows that plasma free fatty acid oxidation is not impaired during exercise in non-obese type II diabetic patients.
DOCUMENT
This letter to the editor argues that the assumption of a single value for the acetate recovery factor in carbon-13 stable isotope research for different individuals, can lead to significant errors in the outcomes of substrate utilization measurements.
DOCUMENT
This paper descibes a study that shows that glycogen-lowering exercise, performed the evening before an exercise bout in combination with glycogen restriction leads to a reduction of the oxidation rate of ingested glucose during moderate-intensity exercise
DOCUMENT
Origin verification of timber is essential to expose origin fraud and reduce illegal timber trade. A promising forensic method for origin verification is based on stable isotope ratios in wood, but large-scale studies that test local and regional variation to apply the method at a sub-country scale are lacking.
LINK
Enforcement of national and international laws banning illegal tropical timber trade hinges on independent origin verification, such as with genetic or chemical wood properties. This is of particular concern in Central Africa, where illegal trade prevails. However, tracing methods have not yet consistently achieved high accuracy (>90%) at small spatial scales (<100 km). Where high precision is required but individual methods fall short, combining methods may improve results, because drivers of wood properties differ. Here, we assessed the individual and combined identification potential of three methods (genetics with 238 plastid Single Nucleotide Polymorphisms, 3 stable isotopes, and 41 elemental concentrations). The combined approach achieved unprecedented accuracy in Central Africa, identifying 94% of samples within 100 km of their origin, outperforming individual methods (50–80%), and verifying real origin for 88%. These findings show that method complementarity boosts tracing accuracy and spatial precision, crucial for high-value timbers or high-risk regions.
LINK
Introduction: The kinetics of protein oxidation, monitored in breath, and its contribution to the whole body protein status is not well established. Objectives: To analyze protein oxidation in various metabolic conditions we developed/validated a 13C-protein oxidation breath test using low enriched milk proteins. Method/Design: 30 g of naturally labeled 13C-milk proteins were consumed by young healthy volunteers. Breath samples were taken every 10 min and 13CO2 was measured by Isotope Ratio Mass Spectrometry. To calculate the amount of oxidized substrate we used: substrate dose, molecular weight and 13C enrichment of the substrate, number of carbon atoms in a substrate molecule, and estimated CO2-production of the subject based on body surface area. Results: We demonstrated that in 255 min 20% ± 3% (mean ± SD) of the milk protein was oxidized compared to 18% ± 1% of 30 g glucose. Postprandial kinetics of oxidation of whey (rapidly digestible protein) and casein (slowly digestible protein) derived from our breath test were comparable to literature data regarding the kinetics of appearance of amino acids in blood. Oxidation of milk proteins was faster than that of milk lipids (peak oxidation 120 and 290 minutes, respectively). After a 3-day protein restricted diet (~10 g of protein/day) a decrease of 31% ± 18% in milk protein oxidation was observed compared to a normal diet. Conclusions: Protein oxidation, which can be easily monitored in breath, is a significant factor in protein metabolism. With our technique we are able to characterize changes in overall protein oxidation under various meta-bolic conditions such as a protein restricted diet, which could be relevant for defining optimal protein intake under various conditions. Measuring protein oxidation in new-born might be relevant to establish its contribution to the protein status and its age-dependent development.
LINK
The data of this study indicate that the acetate recovery factor, used in stable isotope research, needs to be deteremined in every subject, under similar conditions as used for the tracer-derived determination of substrate oxidation.
DOCUMENT
Postprandial high glucose and insulin responses after starchy food consumption, associated with an increased risk of developing several metabolic diseases, could possibly be improved by altering food structure. We investigated the influence of a compact food structure; different wheat products with a similar composition were created using different processing conditions. The postprandial glucose kinetics and metabolic response to bread with a compact structure (flat bread, FB) was compared to bread with a porous structure (control bread, CB) in a randomized, crossover study with ten healthy male volunteers. Pasta (PA), with a very compact structure, was used as the control. The rate of appearance of exogenous glucose (RaE), endogenous glucose production, and glucose clearance rate (GCR) was calculated using stable isotopes. Furthermore, postprandial plasma concentrations of glucose, insulin, several intestinal hormones and bile acids were analyzed. The structure of FB was considerably more compact compared to CB, as confirmed by microscopy, XRT analysis (porosity) and density measurements. Consumption of FB resulted in lower peak glucose, insulin and glucose-dependent insulinotropic polypeptide (ns) responses and a slower initial RaE compared to CB. These variables were similar to the PA response, except for RaE which remained slower over a longer period after PA consumption. Interestingly, the GCR after FB was higher than expected based on the insulin response, indicating increased insulin sensitivity or insulin-independent glucose disposal. These results demonstrate that the structure of wheat bread can influence the postprandial metabolic response, with a more compact structure being more beneficial for health. Bread-making technology should be further explored to create healthier products.
DOCUMENT