Stakeholder engagement in Environmental Impact Assessment (EIA) and Health Impact Assessment (HIA) provides opportunities for inclusive environmental decision-making contributing to the attainment of agreement about the potential environmental and health impacts of a plan. A case evaluation of stakeholder engagement was carried out to assess its effect in terms of consensus-building. The case consisted in two health impact scoping workshops engaging 20 stakeholders: policy-makers, experts and residents. A Participatory Action Research approach was adopted. Methods included observation, semi-structured questionnaires and interviews. Analysis methods consisted of several coding rounds, in-depth reading and discussion of Atlas.ti output reports, as well as studying questionnaire results. Participants reported a broadening of perspectives on health in relation to the environment and attainment of shared perspectives. Still, meaningful differences remained, indicating that joint learning experiences, trust and mutual respect created a ‘sense of consensus’ rather than a joint view on the issues at stake. To avoid disappointment and conflict in later project development, explicit acknowledgment and acceptance of disagreements should be included as a ground rule in future stakeholder engagement processes.
Recent economic crises, environmental problems and social challenges have urged us to drastically change our consumption and production patterns and transform organisations to contribute to socio-technical transitions that positively impact these challenges. Therefore, sustainable development and the transition towards a circular economy are gaining increased attention from academics and are being widely adopted by national and local governments, companies and other organisations and institutions. Since the implementation of more sustainable solutions lags behind expectations and technological possibilities, scholars and practitioners are increasingly seeing sustainable business model innovation as the key pathway to show the value potential of new sustainable technology and stress the importance of integrating the interests of multiple stakeholders and their economic, environmental and social value goals in the business model’s development. However, there is limited research that elucidates which stakeholders are actively involved, how they interact and what the effect is on the collaborative business modelling process for sustainability. This thesis addresses this research gap by building on the notion of business models as boundary-spanning activity-systems and studies stakeholder interaction from the level of a focal firm, as well as from the level of cross-sector actors collaborating in innovation ecosystems. Through four independent studies, three empirical studies and a design science study, this thesis aims to provide a better understanding of how stakeholder interaction affects collaborative business modelling for sustainability.The first study (Chapter 2) took a process perspective on interaction with network ties from the perspective of a focal firm. Based on two case studies of SMEs successfully introducing sustainable technology in the market, value shaping was identified as the operative mechanism describing the relation between networking and business modelling, from ideation to growth of the business. A stage model with five successive forms of value shaping describes how, in each stage, interaction with network ties help firms to clarify the types of economic, environmental and social value that a sustainable technology can deliver and who possible beneficiaries are. In return, changes in the business model clarify what other network ties are needed, demonstrating how the boundary-spanning function of business models spurs firms to expand and strengthen the value network.The second study (Chapter 3) focused on the commercialisation stage, in which a cognitive change in the manager’s mind was found during the development of a sustainable business model. Based on three empirical cases of business model innovations for sustainability, the study explored how stakeholder interaction may trigger and support managerial cognitive change and hence business model innovation. The findings suggest that the influence of stakeholders on the manager’s understanding of the business runs via three interrelated shaping processes: market approach shaping, product and/or service offering shaping and credibility shaping. In these shaping processes, new or latent stakeholders are found to have a bigger impact than existing ones. A research agenda is presented to further unravel the role of stakeholders affecting managerial cognition around business model innovation for sustainability.The third study (Chapter 4) examined innovation ecosystems’ processes of developing a collaborative business model for sustainability. Based on a study of four sustainably innovative cross-sector collaborations, this chapter studied how innovation ecosystems resolve the tensions that emerge from the collaborating actors’ divergent goals and interests. This study finds that innovation ecosystems engage in a process of valuing value that helps the actors to manage the tensions and find a balance of environmental, social and economic value creation and capture that satisfies all involved actors. The findings reveal that valuing value occurs in two different patterns – collective orchestration and continuous search – that open up a research agenda that can shed further light on the conditions that need to be in place in order for an innovation ecosystem to develop effective sustainable business models. The final study (Chapter 5) used a design science approach, developing a tool for innovation ecosystems’ actors to manage the degree to which stakeholders are involved throughout the process of collaborative business modelling for sustainability. The resulting ‘degree of engagement diagram’ and accompanying stepwise approach makes it possible to identify stakeholders from six cross-sector stakeholder groups that represent economic, social and environmental aspects of sustainable value and visualise their roles. By discriminating between four concentric and permeable circles of engagement, the tool integrates different degrees of involvement of stakeholders and enables users of the DoE diagram to accommodate changes that may occur in the evolving business model and its context. The tool enables innovation ecosystems’ actors to keep the collaboration manageable during the development of a joint and viable sustainable business model. Overall, this thesis extends the understanding of the dynamics of collaborative business modelling for sustainability and the role of stakeholder interaction therein. The research makes three key contributions to the sustainable business model innovation literature. First, it extends the literature by exploring the interplay between stakeholder interaction and business modelling over time. It establishes that stakeholder interaction and business modelling have a reciprocal relationship and contributes with two frameworks – value shaping and valuing value – that explain this reciprocal relationship for firms and innovation ecosystems. Second, the thesis unravels the micro-processes and mechanisms that elucidate how stakeholder interaction actually influences the direction into which the sustainable business model develops. Third, this thesis enriches the scholarly understanding of stakeholder interaction by identifying the main contributors to business model innovation for sustainability, by differentiating between stakeholders and their roles and by providing a tool that accommodates this. The research contributes to practice by offering practitioners useful insights on how they can increase, improve and effectuate stakeholder interaction in order to develop viable business models for sustainability and hence contribute to the desired socio-technical transitions.
This paper proposes a new framework for the production and development of immersive and playful technologies in cultural heritage in which different stakeholders such as users and local communities are involved early on in the product development chain. We believe that an early stage of co-creation in the design process produces a clear understanding of what users struggle with, facilitates the creation of community ownership and helps in better defining the design challenge at hand. We show that adopting such a framework has several direct and indirect benefits, including a deeper sense of site and product ownership as direct benefits to the individual, and the creation and growth of tangential economies to the community.
MULTIFILE
Circular BIOmass CAScade to 100% North Sea Region (NSR) economic activity and growth are mostly found in urban areas. Rural NSR regions experience population decline and negative economic growth. The BIOCAS project expects revitalizing and greening of rural areas go hand in hand. BIOCAS will develop rural areas of the NSR into smart specialized regions for integrated and local valorization of biomass. 13 Commercial running Bio-Cascade-Alliances (BCA’s) will be piloted, evaluated and actively shared in the involved regions. These proven concepts will accelerate adoption of high to low value bio-cascading technologies and businesses in rural regions. The project connects 18 regional initiatives around technologies, processes, businesses for the conversion of biomass streams. The initiatives collaborate in a thematic approach: Through engineering, value chain assessments, BCA’s building, partners tackle challenges that are shared by rural areas. I.e. unsustainable biomass use, a mineral surplus and soil degradation, deprivation of potentially valuable resources, and limited involvement of regional businesses and SMEs in existing bio-economy developments. The 18 partners are strongly embedded in regional settings, connected to many local partners. They will align stakeholders in BCA’s that would not have cooperated without BIOCAS interventions. Triple helix, science, business and governmental input will realize inclusive lasting bio cascade businesses, transforming costly waste to resources and viable business.Interreg IVB North Sea Region Programme: €378,520.00, fEC % 50.00%1/07/17 → 30/06/21
Coastal nourishments, where sand from offshore is placed near or at the beach, are nowadays a key coastal protection method for narrow beaches and hinterlands worldwide. Recent sea level rise projections and the increasing involvement of multiple stakeholders in adaptation strategies have resulted in a desire for nourishment solutions that fit a larger geographical scale (O 10 km) and a longer time horizon (O decades). Dutch frontrunner pilot experiments such as the Sandmotor and Ameland inlet nourishment, as well as the Hondsbossche Dunes coastal reinforcement project have all been implemented from this perspective, with the specific aim to encompass solutions that fit in a renewed climate-resilient coastal protection strategy. By capitalizing on recent large-scale nourishments, the proposed Coastal landSCAPE project C-SCAPE will employ and advance the newly developed Dynamic Adaptive Policy Pathways (DAPP) approach to construct a sustainable long-term nourishment strategy in the face of an uncertain future, linking climate and landscape scales to benefits for nature and society. Novel long-term sandy solutions will be examined using this pathways method, identifying tipping points that may exist if distinct strategies are being continued. Crucial elements for the construction of adaptive pathways are 1) a clear view on the long-term feasibility of different nourishment alternatives, and 2) solid, science-based quantification methods for integral evaluation of the social, economic, morphological and ecological outcomes of various pathways. As currently both elements are lacking, we propose to erect a Living Lab for Climate Adaptation within the C-SCAPE project. In this Living Lab, specific attention is paid to the socio-economic implications of the nourished landscape, as we examine how morphological and ecological development of the large-scale nourishment strategies and their design choices (e.g. concentrated vs alongshore uniform, subaqueous vs subaerial, geomorphological features like artificial lagoons) translate to social acceptance.
In Amsterdam's neighbourhoods, much of the waste that is disposed has the potential of becoming something else by means of recycling or upcycling. Zero Waste lab –which is part of the organization De Gezonde Stad- is a place where inhabitants can bring their own separated waste in exchange for value coins. Now, Zero Waste Lab now wants to take this a step forward and further develop their own project: from recycling to upcycling waste. In this endeavour, HvA will collaborate by researching the possibilities for upcycling a local waste stream by means of digital production pro-cesses, as well as ways of involving the neighbourhood. Because it is of vital importance for the project not only to be technically possible, but also scalable and economically feasible, Zero Waste Lab and HvA have asked for partnership to the company Verdraaid Goed. This partnership and specific case study, presented here as ‘Wood for the neighborhood’ can be summa-rized in four main goals: • (Production) Explore the design and manufacturing possibilities of using digital production to upcycle a local wood waste stream (with an industrial robotic arm) • (Design) Show how explorative research, when carried on from the beginning of the de-sign process, can bring great added value to the development of project concepts. • (Social) Demonstrate that involving stakeholders early in the process of reusing and de-signing with waste materials can shape the future in new directions • (All three) Highlight how this case study is relevant and fits the principles of the circular economy.