Cities are confronted with more frequent heatwaves of increasing intensity discouraging people from using urban open spaces that are part of their daily lives. Climate proofing cities is an incremental process that should begin where it is needed using the most cost-efficient solutions to mitigate heat stress. However, for this to be achieved the factors that influence the thermal comfort of users, such as the layout of local spaces, their function and the way people use them needs to be identified first. There is currently little evidence available on the effectiveness of heat stress interventions in different types of urban space.The Cool Towns Heat Stress Measurement Protocol provides basic guidance to enable a full Thermal Comfort Assessment (TCA) to be conducted at street-level. Those involved in implementing climate adaptation strategies in urban areas, such as in redevelopments will find practical support to identify places where heat stress may be an issue and suggestions for effective mitigation measures. For others, such as project developers, and spatial designers such as landscape architects and urban planners it provides practical instructions on how to evaluate and provide evidence-based justification for the selection of different cooling interventions for example trees, water features, and shade sails, for climate proofing urban areas.
MULTIFILE
This overview can be regarded as an atlas or travel guide with which the reader can follow a route along the various professorships. Chapter 2 centres on the professorships that are active in the field of Service Economy. Chapter 3 is dedicated to the professorships that are focussed on the field of Vital Region. Chapter 4 describes the professorships operating in the field of Smart Sustainable Industries. Chapter 5 deals with the professorships that are active in the field of the institution-wide themes of Design Based Education and Design Based Research. Lastly, in Chapter 6 we make an attempt to discover one or more connecting themes or procedures in the approach of the various professorships. This publication is not intended to give a definitive answer to the question as to what exactly NHL Stenden means by the concept of Design Based Research. The aim of this publication is to get an idea of everything that is happening in the NHL Stenden professorships and to pique one’s curiosity to find out more.
The rising global demand for district nursing care necessitates effective strategies to support evidence-based decision-making. Despite the extensive development of nursing guidelines, adherence by district nursing teams remains suboptimal, revealing a gap between guideline development and daily practice. The Learning And Reflection for Nurses (LEARN) programme aims to bridge this gap by enhancing guideline use and fostering a learning attitude among district nursing teams. This protocol outlines the programme’s development, components and evaluation approach.
LINK
Organ-on-a-chip technology holds great promise to revolutionize pharmaceutical drug discovery and development which nowadays is a tremendously expensive and inefficient process. It will enable faster, cheaper, physiologically relevant, and more reliable (standardized) assays for biomedical science and drug testing. In particular, it is anticipated that organ-on-a-chip technology can substantially replace animal drug testing with using the by far better models of true human cells. Despite this great potential and progress in the field, the technology still lacks standardized protocols and robust chip devices, which are absolutely needed for this technology to bring the abovementioned potential to fruition. Of particular interest is heart-on-a-chip for drug and cardiotoxicity screening. There is presently no preclinical test system predicting the most important features of cardiac safety accurately and cost-effectively. The main goal of this project is to fabricate standardized, robust generic heart-on-a-chip demonstrator devices that will be validated and further optimized to generate new physiologically relevant models to study cardiotoxicity in vitro. To achieve this goal various aspects will be considered, including (i) the search for alternative chip materials to replace PDMS, (ii) inner chip surface modification and treatment (chemistry and topology), (iii) achieving 2D/3D cardiomyocyte (long term) cell culture and cellular alignment within the chip device, (iv) the possibility of integrating in-line sensors in the devices and, finally, (v) the overall chip design. The achieved standardized heart-on-a-chip technology will be adopted by pharmaceutical industry. This proposed project offers a unique opportunity for the Netherlands, and Twente in particular, which has relevant expertise, potential, and future perspective in this field as it hosts world-leading companies pioneering various core aspects of the technology that are relevant for organs-on-chips, combined with two world-leading research institutes within the University of Twente.
Climate change and the depletion of resources in the world are widely recognized as the greatest societal challenges. The building sector is responsible for 40% of the raw material consumption globally. The emissions related to construction materials are anticipated to double by 2050, if no new technologies are adopted (EC, 2021). Based on the environmental cost indicator, isolation has the second largest (after concrete) impact to the environment. In Mythic - Myterials for THermal Insulation in Construction goal is to develop (in co-creation with the work field) the best available mycelium biocomposite, which can be used as a circular, biodegradable insulation material for construction in the building sector. In recent research projects partners concluded that Mycelium biocomposites have a high potential to replace traditional fossil-based isolation materials, but further research on the thermal insulation and moisture absorption is needed to convince the construction market. In the project various partners will cooperate, both from the production side of mycelium composites, as well as from the application side. Some partners originate from previous projects, but others contacted Centre of Expertise for the Biobased Economy (CoEBBE) to build further on the existing network. There are several SME’s from the Netherlands, but also from abroad (Nylausn from Iceland, Mogu Srl from Italy and Corstyrene form France), as well as Branche organizations and knowledge institutes. Avans works together with HZ in CoEBBE and for the microbiological knowledge we cooperate with the University of Utrecht. For the market research CoEBBE cooperates with the lectorate New Marketing within Avans, focussing on sustainability via biomimicry. Mycelium composites and natural products for the building industry is the theme that binds all partners.