This paper highlights the use of State Space Grids (SSGs) for studying real-time classroom discourse in an intervention targeting professional development. State Space Grid analysis is both a powerful way to visualise patterns in interactional data, and a starting point for further quantitative analysis. In the present study SSGs were used to explore patterns in teacher–student interactions. The study shows the importance of using micro-level time-serial data and illustrates how change in interactions during and after an intervention can be studied. SSG analysis was applied to study interaction in terms of the coupling of a teacher and a student variable: autonomy support and musical creativity. Video data from 40 music lessons of five teachers and their classes was used as input for plotting teacher–student interactions in SSGs, consisting of two dimensions. SSGs allow visualising change in the situation of interactions in the grid and identifying change in patterns to different grid areas. The findings show how interactions tended to settle in areas representing more productive interaction for all but one class. We discuss the benefits of using SSGs in intervention studies and the implications for educational practice and research of using this time-serial approach.
DOCUMENT
Like the professionals, design students tend to avoid the complexity of the user context, and moral issues are largely overlooked. This inspired us to explore whether we could engage design students in thinking about moral issues by exploring different ethical frameworks in their designing. As a case environment we chose smart-grid product service combinations. In this paper we first discuss the ethical frameworks of four selected philosophers’: Plato, Rousseau, Kant, & Mill. Then we will describe the student design process, the resulting four smart grid service concepts and the user insights that came from a user evaluation. We discuss how this approach allowed the students to get insights in their own ethical stance and how they allowed users to reflect on possible futures. We also discuss how these ‘probing’ concepts were used within the larger smart grid project.
DOCUMENT
The application of DC grids is gaining more attention in office applications. Especially since powering an office desk would not require a high power connection to the main AC grid but could be made sustainable using solar power and battery storage. This would result in fewer converters and further advanced grid utilization. In this paper, a sustainable desk power application is described that can be used for powering typical office appliances such as computers, lighting, and telephones. The desk will be powered by a solar panel and has a battery for energy storage. The applied DC grid includes droop control for power management and can either operate stand-alone or connected to other DC-desks to create a meshed-grid system. A dynamic DC nano-grid is made using multiple self-developed half-bridge circuit boards controlled by microcontrollers. This grid is monitored and controlled using a lightweight network protocol, allowing for online integration. Droop control is used to create dynamic power management, allowing automated control for power consumption and production. Digital control is used to regulate the power flow, and drive other applications, including batteries and solar panels. The practical demonstrative setup is a small-sized desktop with applications built into it, such as a lamp, wireless charging pad, and laptop charge point for devices up to 45W. User control is added in the form of an interactive remote wireless touch panel and power consumption is monitored and stored in the cloud. The paper includes a description of technical implementation as well as power consumption measurements.
DOCUMENT