As Vehicle-to-Everything (V2X) communication technologies gain prominence, ensuring human safety from radiofrequency (RF) electromagnetic fields (EMF) becomes paramount. This study critically examines human RF exposure in the context of ITS-5.9 GHz V2X connectivity, employing a combination of numerical dosimetry simulations and targeted experimental measurements. The focus extends across Road-Side Units (RSUs), On-Board Units (OBUs), and, notably, the advanced vehicular technologies within a Tesla Model S, which includes Bluetooth, Long Term Evolution (LTE) modules, and millimeter-wave (mmWave) radar systems. Key findings indicate that RF exposure levels for RSUs and OBUs, as well as from Tesla’s integrated technologies, consistently remain below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) exposure guidelines by a significant margin. Specifically, the maximum exposure level around RSUs was observed to be 10 times lower than ICNIRP reference level, and Tesla’s mmWave radar exposure did not exceed 0.29 W/m2, well below the threshold of 10 W/m2 set for the general public. This comprehensive analysis not only corroborates the effectiveness of numerical dosimetry in accurately predicting RF exposure but also underscores the compliance of current V2X communication technologies with exposure guidelines, thereby facilitating the protective advancement of intelligent transportation systems against potential health risks.
MULTIFILE
Citizens regularly search the Web to make informed decisions on daily life questions, like online purchases, but how they reason with the results is unknown. This reasoning involves engaging with data in ways that require statistical literacy, which is crucial for navigating contemporary data. However, many adults struggle to critically evaluate and interpret such data and make data-informed decisions. Existing literature provides limited insight into how citizens engage with web-sourced information. We investigated: How do adults reason statistically with web-search results to answer daily life questions? In this case study, we observed and interviewed three vocationally educated adults searching for products or mortgages. Unlike data producers, consumers handle pre-existing, often ambiguous data with unclear populations and no single dataset. Participants encountered unstructured (web links) and structured data (prices). We analysed their reasoning and the process of preparing data, which is part of data-ing. Key data-ing actions included judging relevance and trustworthiness of the data and using proxy variables when relevant data were missing (e.g., price for product quality). Participants’ statistical reasoning was mainly informal. For example, they reasoned about association but did not calculate a measure of it, nor assess underlying distributions. This study theoretically contributes to understanding data-ing and why contemporary data may necessitate updating the investigative cycle. As current education focuses mainly on producers’ tasks, we advocate including consumers’ tasks by using authentic contexts (e.g., music, environment, deferred payment) to promote data exploration, informal statistical reasoning, and critical web-search skills—including selecting and filtering information, identifying bias, and evaluating sources.
LINK
Challenges that surveys are facing are increasing data collection costs and declining budgets. During the past years, many surveys at Statistics Netherlands were redesigned to reduce costs and to increase or maintain response rates. From 2018 onwards, adaptive survey design has been applied in several social surveys to produce more accurate statistics within the same budget. In previous years, research has been done into the effect on quality and costs of reducing the use of interviewers in mixed-mode surveys starting with internet observation, followed by telephone or face-to-face observation of internet nonrespondents. Reducing follow-ups can be done in different ways. By using stratified selection of people eligible for follow-up, nonresponse bias may be reduced. The main decisions to be made are how to divide the population into strata and how to compute the allocation probabilities for face-to-face and telephone observation in the different strata. Currently, adaptive survey design is an option in redesigns of social surveys at Statistics Netherlands. In 2018 it has been implemented in the Health Survey and the Public Opinion Survey, in 2019 in the Life Style Monitor and the Leisure Omnibus, in 2021 in the Labour Force Survey, and in 2022 it is planned for the Social Coherence Survey. This paper elaborates on the development of the adaptive survey design for the Labour Force Survey. Attention is paid to the survey design, in particular the sampling design, the data collection constraints, the choice of the strata for the adaptive design, the calculation of follow-up fractions by mode of observation and stratum, the practical implementation of the adaptive design, and the six-month parallel design with corresponding response results.
DOCUMENT