The increase in renewable energy sources will require an increase in the operational flexibility of the grid, due to the intermittent nature of these sources. This can be achieved for the gas and the electricity grid, which are integrated by means of power-to-gas and vice versa, by applying gas and other energy storages. Because renewables are applied on a decentralized scale level and syngas and biogas are produced at relatively low pressures, we study the application of a decentralized (bio)gas storage system combined withMicro Turbine Technology (MTT), Compressed Air Energy Storage (CAES) and Thermal Energy Storage (TES) units, which are designed to optimize energy efficiency.In this study we answer the following research questions:a. What is the techno-economical feasibilty of applying a decentralized (bio)gas storage with a MTT/CAES/TES system to balance the integrated renewable energy network?b. How should the decentralized (bio)gas storage with MTT/CAES/TES system be designed, so that the energy efficient application in such networks is optimized?Note that:c. We verify the calculations for the small scale MTT unit with measurements on our proof-of-principle set-up of part of the system that includes two MTTs in parallel.Based on wind speed, irradiance patterns and electricity and heat demand patterns for a case of 100 households, we found the optimum dimensions for the decentralized (bio)gas storage based on guaranteed supply. We concluded that a decentralized (bio)gas storage of 85 000 Nm3 was needed to provide the heat demand. LNG was the most energy efficient storage technology for such dimensions.The use of (bio)gas directly in a CHP (P/Q ratio = 2/3) that was mainly heat driven, resulted in a continuous overproduction of electricity due to the dominant heat demand of the 100 households in the Netherlands.This does not leave any room for the increase in the application of PV and wind generators, nor is there a purpose for electricity storage.For that reason we will further investigate the application of a decentralized (bio)gas storage with MTT/CAES/TES as a solution to balance a renewable integrated network. Using an MTT in the system offers a more useful P/Q ratio for households of 1/5.
This report presents the experimental and numerical work carried out by ECN and Hanze University of Applied Sciences on methane sorption on activated carbon, as part of their activities within the EDGaR Energy Storage project. Eleven different activated carbon types were tested. It was found that MaxSorb MSC-30 offered the highest methane mass storage density (m/m ratio). However, due to the low density of the MaxSorb MSC-30 activated carbon, the highest volumetric methane storage density (V/V ratio) was found for Brightblack. An increase of the packing density and heat conductivity significantly improves the V/V ratio and shortens the time needed to reach thermal equilibrium. In the case of the Brightblack activated carbon, a total V/V ratio of 112 was found at 12 oC and 40 bar, implying an effective storage density that is 3 times higher than for compressed methane. During the adsorption of methane on activated carbon, sorption heat is released and the temperature of the bed is increased, which negatively affects the effective V/V ratio. Temperature rises up to 70 oC were experimentally observed at higher methane inflow rates. For MaxSorb MSC-30 a temperature rise of 25 oC reduced the effective V/V ratio by about 20 %. The temperature rise of the Brightblack bed caused relatively smaller reductions in the volumetric storage density. Calculations with the validated numerical models indicated an even higher temperature increase for the full scale methane storage, reaching bed temperatures up to 137-150 oC in the case of the MaxSorb MSC-30 activated carbon. At this temperature range, the models indicate a V/V ratio fall down to 46. This performance is similar to the one offered by direct methane compression to 40 bar, and is much lower than the V/V ratio of ~ 100 that was found both experimentally and by calculations for the lab scale reactor performance. The calculations showed, that the low bed permeability can limit the gas flow during adsorption and desorption. A high reactor diameter can countervail the effect of permeability, but the higher dimensions impede the heat dissipation and thus decrease the storage efficiency. Efficient temperature control and management are very important to effectively make use of the methane storage capacity through adsorption.
A transition of today’s energy system towards renewableresources, requires solutions to match renewable energy generationwith demand over time. These solutions include smartgrids, demand-side management and energy storage. Energycan be stored during moments of overproduction of renewableenergy and used from the storage during moments ofinsufficient production. Allocation in real time of generatedenergy towards controlled appliances or storage chargers, isdone by a smart control system which makes decisions basedon predictions (of upcoming generation and demand) andinformation of the actual condition of storages.
MULTIFILE
Wat is de mogelijke rol van lokale duurzame energiesystemen en –initiatieven in de overgang naar een duurzame samenleving? En hoe kunnen op lokale toepassing gerichte innovaties worden ontwikkeld en toegepast op een zodanige manier dat deze bij lokale systemen en initiatieven aansluiten?Deze vragen staan centraal in dit onderzoeksproject dat zich richt op innovaties die rekening houden met een grotere rol van burgers bij een duurzame energievoorziening. Het project behelst echter meer dan het verrichten van onderzoek. Het beoogt bouwstenen te leveren voor een duurzame samenleving waarin meer ruimte is voor lokale (burger)initiatieven. We stellen drie deelprojecten voor:1. een vergelijkende studie naar energiecoöperaties en vergelijkbare innovatieve initiatieven, binnen en buiten Nederland, in heden en verleden. Daarbij hopen we lering te kunnen trekken uit de succesvolle ervaringen in Denemarken en Oostenrijk en van innovaties door coöperatiesen collectieven in het verleden.2. een analyse van energie-innovaties die beogen aan te sluiten bij lokale energiesystemen. Concreet zal het onderzoek zich richten op speciale batterijen, ontwikkeld dor het bedrijf Dr.Ten, en een soort slimme grote zoneboiler, ontwikkeld door het gelijknamige bedrijf Ecovat.3. De ontwikkeling van drie scenario’s, gebaseerd op inzichten uit studies 1 en 2. De scenario’s zullen bijvoorbeeld inhoudelijk verschillen in de mate waarin deze geïntegreerd zijn in bestaande energiesystemen. Deze zullen worden ontwikkeld en besproken met relevante stakeholders.Het onderzoek moet leiden tot een nauwkeurig overzicht van de mate van interesse en betrokkenheid van stakeholders en van de beperkingen en mogelijkheden van lokale energiesystemen en daarbij betrokken technologie. Ook leidt het tot een routemap voor duurzame energiesystemen op lokaal niveau. Het project heeft een technisch aspect, onderzoek naar verfijning en ontwikkeling van de technologie en een sociaal en normatief aspect, studies naar aansluitingsmogelijkheden bij de wensen en mogelijkheden van burgers, instanties en bedrijven in Noord-Nederland. Bovenal is het integratief en ontwerpend van karakter.This research proposal will explore new socio- technical configurations of local community-based sustainable energy systems. Energy collectives successfully combine technological and societal innovations, developing new business and organization models. A better understanding of their dynamics and needs will contribute to their continued success and thereby contribute to fulfilling the Top Sector’s Agenda. This work will also enhance the knowledge position of the Netherlands on this topic. Currently, over 500 local energy collectives are active in The Netherlands, many of them aim to produce their own sustainable energy, with thousands more in Europe. These collectives search for a new more local-based ways of organizing a sustainable society, including more direct democratic decision-making and influence on local living environment. The development of the collectives is enabled by openings in policy but –evenly important - by innovations in local energy production technologies (solar panels, windmills, biogas installations). Their future role in the sustainable energy transition can be strengthened by careful aligning new organizational and technological innovations in local energy production, storage and smart micro-grids.
Under the umbrella of artistic sustenance, I question the life of materials, subjective value structures, and working conditions underlying exhibition making through three interconnected areas of inquiry: Material Life and Ecological Impact — how to avoid the accumulation of physical materials/storage after exhibitions? I aim to highlight the provenance and afterlife of exhibition materials in my practice, seeking economic and ecological alternatives to traditional practices through sustainable solutions like borrowing, reselling, and alternative storage methods that could transform exhibition material handling and thoughts on material storage and circulation. Value Systems and Economic Conditions —what do we mean when we talk about 'value' in relation to art? By examining the flow of financial value in contemporary art and addressing the subjectivity of worth in art-making and artists' livelihoods, I question traditional notions of sculptural skill while advocating for recognition of conceptual labour. The research considers how artists might be compensated for the elegance of thought rather than just material output. Text as Archive and Speculation— how can text can store, speculate, and circulate the invisible labour and layers of exhibition making? Through titles, material lists, and exhibition texts, I explore writing's potential to uncover latent structures and document invisible labor, considering text both as an archiving method and a tool for speculating about future exhibitions. Using personal practice as a case study, ‘Conditions for Raw Materials’ seeks to question notions of value in contemporary art, develop alternative economic models, and make visible the material, financial, and relational flows within exhibitions. The research will manifest through international exhibitions, a book combining poetic auto-theoretical reflection with exhibition speculation, new teaching formats, and long-term investigations. Following “sticky relations," of intimacy, economy and conditions, each exhibition serves as a case study exploring exhibition making from emotional, ecological, and economic perspectives.
In Gelderland at industriepark Kleefsewaard, a prominent knowledge hub for hydrogen technology has been developed, featuring key industry players and research groups contributing to innovative and cost-effective hydrogen technologies. However, the region faces a challenge in the lack of available test equipment for hydrogen innovations. In Anion Exchange Membrane (AEM) technology, a route to follow is to create hydrogen more efficiently with stacks that can operate under high pressure (50 bar – 200 bar). This results in compact hydrogen storage. Research must be done to understand crossover effects which become more apparent at these high pressure conditions. The overall goal is to design a Balanced of Plant (BOP) system, incorporating Process Flow Diagram (PFD) and Piping & Instrumentation Diagram (P&ID) elements, alongside hydrogen purification systems and gas-liquid separators, for a test setup operating AEM stacks at 200 bar. De Nooij Stainless contributes by designing and fabricating a gas liquid separator, addressing challenges such as compatibility, elevated temperatures, and hydrogen safety. ON2Quest collaborates in supporting the design of a hydrogen purification system and the Balance of Plant (BoP), ensuring flexibility for testing future stacks and hydrogen purification components. HyET E-Trol specializes in high pressure (up to 200 bar) AEM electrolyser stacks and is responsible for providing problem statements and engineering challenges related to the (Balanced of Plant) BoP of AEM systems, and contributes in solving them. Subsequent projects will feature test sequences centered on other stacks, allowing for testing stacks from other companies. The resulting framework will provide a foundation for ongoing advancements, with contributions from each partner playing a crucial role in achieving the project's goals.