Urban flooding and thermal stress have become key issues for many cities around the world. With the continuing effects of climate change, these two issues will become more acute and will add to the serious problems already experienced in dense urban areas. Therefore, the sectors of public health and disaster management are in the need of tools that can assess the vulnerability to floods and thermal stress. The present paper deals with the combination of innovative tools to address this challenge. Three cities in different climatic regions with various urban contexts have been selected as the pilot areas to demonstrate these tools. These cities are Tainan (Taiwan), Ayutthaya (Thailand) and Groningen (Netherlands). For these cities, flood maps and heat stress maps were developed and used for the comparison analysis. The flood maps produced indicate vulnerable low-lying areas, whereas thermal stress maps indicate open, unshaded areas where high Physiological Equivalent Temperature (PET) values (thermal comfort) can be expected. The work to date indicates the potential of combining two different kinds of maps to identify and analyse the problem areas. These maps could be further improved and used by urban planners and other stakeholders to assess the resilience and well-being of cities. The work presented shows that the combined analysis of such maps also has a strong potential to be used for the analysis of other challenges in urban dense areas such as air and water pollution, immobility and noise disturbance.
Urban green and shading are adaptation measures that reduce urban heat. This is evident from meteorological measurements and investigations with surveys and has been described in many papers (e.g. Klemm et al., 2015). The cooling effect of these adaptation measures is reflected by lower air temperatures and an improved thermal comfort. Shading and urban green are also experienced as cooler than impervious urban spaces without vegetation or shading. However, the cooling effect of water bodies in cities, such as rivers, lakes, ponds, canals,fountains, is not clear yet (Steeneveld et al., 2014). Several studies show that the cooling effect of water bodies in cities is small, or can even be a source of heat during nighttime. The effect depends on the characteristics of the water body and the meteorological conditions. Nevertheless, water is often mentioned as an adaptation measure to reduce urban heat.To support urban professionals in designing cooler urban environments by using water bodies, we investigated in more detail how different water types in msterdam contribute to cooling the environment. During five summer days, we measured the cooling effect of five different water bodies: a pond, a fountain, a canal, and two rivers. We used measurements from mobile weather stations (air temperature, relative humidity, wind speed, global radiation and globe temperature) and collected almost 1000 surveys near the water bodies and a reference location. From these data, we could determine the effect of the water bodies on air temperature, thermal comfort and thermal sensation. The research question that we tried to answer with this study is: What is the cooling effect of different water types in the city of Amsterdam during hot days? The study has been carried out within the framework of a Dutch research project ‘Urban climate resilience – Turning climate adaptation into practice’ and supports urban professionals to decide on the right adaptation measures to reduce urban heat.
Stormwater flooding and thermal stresses of citizens are two important phenomena for most of the dense urban area. Due to the climate change, these two phenomena will occur more frequently and cause serious problems. Therefore, the sectors for public health and disaster management should be able to assess the vulnerability to stormwater flooding and thermal stress. To achieve this goal, two cities in different climate regions and with different urban context have been selected as the pilotareas, i.e., Tainan, Taiwan and Groningen, Netherlands. Stormwater flooding and thermal stress maps will be produced for both cities for further comparison. The flooding map indicates vulnerable low lying areas, where the thermal stress map indicates high Physiological Equivalent Temperature (PET) values (thermal comfort) in open areas without shading. The combined map indicates the problem areas of flooding and thermal stress and can be used by urban planners and other stakeholders to improve the living environment. --Les inondations consécutives à des pluies torrentielles, ainsi que le stress thermique dû à des canicules, sont deux phénomènes inquiétants pour la plupart des centres urbains, densément peuplés. Par suite du changement climatique, ces deux phénomènes se produiront à l’avenir plus souvent, et peuvent conduire à de graves problèmes. C’est pourquoi les départements de la santé publique et de la gestion des catastrophes naturelles voudraient être en mesure d’évaluer lavulnérabilité de leurs centres urbains face à des situations d’inondations et de stress thermique. Pouratteindre cet objectif, un projet de recherche a été lancé, en se basant sur deux villes différentes quant à leur région climatique et leur contexte urbain: Tainan à Taïwan et Groningen aux Pays-Bas. Le projet permettra d’élaborer des cartes indiquant les risques dans les deux cas, afin de permettre des comparaisons ultérieures. Une carte d’altitude indiquera les zones basses, vulnérables à des inondations, et une carte thermique montrera où sont les températures physiologiques équivalentes(valeurs PET) élevées. La carte combinée permettra d’identifier les zones à problèmes d’inondation et de stress thermique, et pourra être utilisées par les urbanistes et les autres parties prenantes pour améliorer notre environnement.
LINK
The research proposal aims to improve the design and verification process for coastal protection works. With global sea levels rising, the Netherlands, in particular, faces the challenge of protecting its coastline from potential flooding. Four strategies for coastal protection are recognized: protection-closed (dikes, dams, dunes), protection-open (storm surge barriers), advancing the coastline (beach suppletion, reclamation), and accommodation through "living with water" concepts. The construction process of coastal protection works involves collaboration between the client and contractors. Different roles, such as project management, project control, stakeholder management, technical management, and contract management, work together to ensure the project's success. The design and verification process is crucial in coastal protection projects. The contract may include functional requirements or detailed design specifications. Design drawings with tolerances are created before construction begins. During construction and final verification, the design is measured using survey data. The accuracy of the measurement techniques used can impact the construction process and may lead to contractual issues if not properly planned. The problem addressed in the research proposal is the lack of a comprehensive and consistent process for defining and verifying design specifications in coastal protection projects. Existing documents focus on specific aspects of the process but do not provide a holistic approach. The research aims to improve the definition and verification of design specifications through a systematic review of contractual parameters and survey methods. It seeks to reduce potential claims, improve safety, enhance the competitiveness of maritime construction companies, and decrease time spent on contractual discussions. The research will have several outcomes, including a body of knowledge describing existing and best practices, a set of best practices and recommendations for verifying specific design parameters, and supporting documents such as algorithms for verification.
INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.INXCES will develop new innovative technological methods for risk assessment and mitigation of extreme hydroclimatic events and optimization of urban water-dependent ecosystem services at the catchment level, for a spectrum of rainfall events. It is widely acknowledged that extreme events such as floods and droughts are an increasing challenge, particularly in urban areas. The frequency and intensity of floods and droughts pose challenges for economic and social development, negatively affecting the quality of life of urban populations. Prevention and mitigation of the consequences of hydroclimatic extreme events are dependent on the time scale. Floods are typically a consequence of intense rainfall events with short duration. In relation to prolonged droughts however, a much slower timescale needs to be considered, connected to groundwater level reductions, desiccation and negative consequences for growing conditions and potential ground – and building stability.INXCES will take a holistic spatial and temporal approach to the urban water balance at a catchment scale and perform technical-scientific research to assess, mitigate and build resilience in cities against extreme hydroclimatic events with nature-based solutions.INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.