Grammar-based procedural level generation raises the productivity of level designers for games such as dungeon crawl and platform games. However, the improved productivity comes at cost of level quality assurance. Authoring, improving and maintaining grammars is difficult because it is hard to predict how each grammar rule impacts the overall level quality, and tool support is lacking. We propose a novel metric called Metric of Added Detail (MAD) that indicates if a rule adds or removes detail with respect to its phase in the transformation pipeline, and Specification Analysis Reporting (SAnR) for expressing level properties and analyzing how qualities evolve in level generation histories. We demonstrate MAD and SAnR using a prototype of a level generator called Ludoscope Lite. Our preliminary results show that problematic rules tend to break SAnR properties and that MAD intuitively raises flags. MAD and SAnR augment existing approaches, and can ultimately help designers make better levels and level generators.
From the article : "Based on a review of recent literature, this paper addresses the question of how urban planners can steer urban environmental quality, given the fact that it ismultidimensional in character, is assessed largely in subjective terms and varies across time. A novel perspective of urban environmental quality is proposed, simultaneously exploring three questions that are at the core of planning and designing cities: ‘quality of what?’, ‘quality for whom?’ and ‘quality at what time?’. The dilemmas that urban planners face in answering these questions are illustrated using secondary material. This approach provides perspectives for action. Rather than further detailing the exact nature of urban quality, it calls for sustainable urban environmental quality planning that is integrated, participative and adaptive" ( wileyonlinelibrary.com ) DOI: 10.1002/eet.1759 - Preprint available for free download.
Storm sewers are known to significantly contribute to annual pollutant loads to receiving water bodies. The storm sewers of the city of Almere discharge the stormwater of 1384 ha of impervious area via 700 storm sewer outfalls (SSOs) to the local receiving water system. This water system suffers from eutrophication and long term build-up of pollutant levels in the sediment bed. In order to be able to select the most effective stormwater management strategy, the municipality of Almere and Water Authority Zuiderzeeland have launched a 2 year extensive monitoring project to measure the stormwater quality and the potential impact of source control and end of pipe measures to decrease the emission via SSOs. Source control measures, such as removal of illicit connections and increasing the cleaning frequency of gully pots showed to be most effective. The potential impact of end of pipesolutions based on settling showed to be very limited due to the low settleability of solids in the storm water of Almere at the SSOs.
INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.INXCES will develop new innovative technological methods for risk assessment and mitigation of extreme hydroclimatic events and optimization of urban water-dependent ecosystem services at the catchment level, for a spectrum of rainfall events. It is widely acknowledged that extreme events such as floods and droughts are an increasing challenge, particularly in urban areas. The frequency and intensity of floods and droughts pose challenges for economic and social development, negatively affecting the quality of life of urban populations. Prevention and mitigation of the consequences of hydroclimatic extreme events are dependent on the time scale. Floods are typically a consequence of intense rainfall events with short duration. In relation to prolonged droughts however, a much slower timescale needs to be considered, connected to groundwater level reductions, desiccation and negative consequences for growing conditions and potential ground – and building stability.INXCES will take a holistic spatial and temporal approach to the urban water balance at a catchment scale and perform technical-scientific research to assess, mitigate and build resilience in cities against extreme hydroclimatic events with nature-based solutions.INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.