Although permeable pavements have been used all over the world in recent years to infiltrate and treat stormwater, only limited research has been undertaken to investigate and compare the long-term performance of these sustainable urban drainage system devices. This paper presents the results of an extensive international review of research on the reduction of infiltration capacity of permeable pavements over time. The results of these studies, coupled with specific knowledge of the key environmental factors on the individual research locations and infiltration testing methods used, enables the maintenance of these SUDS to be strategically planned in order to meet specific European and international infiltration capacity guidelines.
DOCUMENT
Permeable pavements are a type of sustainable urban drainage system (SUDS)technique that are used around the world to infiltrate and treat urban Stormwater runoff and to minimize runoff volumes. Urban stormwater runoff contains significant concentrations of suspended sediments that can cause clogging and reduce the infiltration capacity and effectiveness of permeable pavements. It is important for stormwater managers to be able to determine when the level of clogging has reached an unacceptable level, so that they can schedule maintenance or replacement activities as required. Newly-installed permeable pavements in the Netherlands must demonstrate a minimum infiltration capacity of 194 mm/h (540 l/s/ha). Other commonly used permeable pavement guidelines in the Netherlands recommend that maintenance is undertaken on permeable pavements when the infiltration falls below 0.50 m/d (20.8 mm/h). This study used a newly-developed, full-scale infiltrationtest procedure to evaluate the infiltration performance of eight permeable pavements in five municipalities that had been in service for over seven years in the Netherlands. The determined infiltration capacities vary between 29 and 342 mm/h. Two of the eight pavements show an infiltration capacity higher than 194 mm/h, and all infiltration capacities are higher than 20.8 mm/h. According to the guidelines, this suggests that none of the pavements tested in this study would require immediate maintenance.
DOCUMENT
Urbanisation and climate change have an effect on the water balance in our cities resulting in challenges as flooding, droughts and heatstress. Implementation of Sustainable Urban Drainage Systems (SuDS) can help to restore the water balance in cities by storing and infiltrating stormwater into the subsurface to minimise flooding, restoration of groundwater tables to prevent droughts, lowering temperatures by evapotranspiration to fight heatstress. Urban planners and otherstakeholders in municipalities and water authorities struggle with implementing SuDS at locations where infiltration of water seems challenging. Questions arise as: can you infiltrate in countries as The Netherlands with parts under sea level, high groundwater table and low permeable soil? Can you infiltrate in Norway with low permeable or impermeable bedrock and frozen ground most of theyear? How do you find space to implement SuDS in the dense urban areas of Bucharest? These questions are answered by researchers of the JPI Water funded project INovations for eXtreme Climatic Events (INXCES).To answer the question on ‘can we infiltrate stormwater under worse case conditions?’, testing of the hydraulic capacity take place at rainwater gardens in Norway (Bergen and Trondheim) and (bio)swales in the low lying parts of The Netherlands. The first results show that even under these ‘extreme’ hydraulic circumstances the hydraulic capacity (or empty time) is sufficient to infiltratemost of the stormwater throughout the year.INXCES exchanged researchers on an international level, shared research results with stakeholders and sets up guidelines for design, implementation and maintenance of SuDS to promote the implementation of sustainable water management systems throughout the world.One of the tools used to promote SuDS is www.climatescan.nl, an open source online map application that provides an easy-to-access database of international project information in the field of urban resilience and climate adaptation. The tool is able to map several sustainable urban drainage systems as has been done for Norway, The Netherlands, Romania and other countries in the world.The tool is used for engagement with stakeholders within EU projects as INXCES and WaterCoG and resulted in international knowledge exchange on infiltration of stormwater under extreme climate and geohydrolic circumstances.
DOCUMENT
Over the past decades, various types of permeable pavements have been implemented in different municipalities in the Netherlands in order to improve infiltration capacity in urban areas and therewith being able to better treat stormwater runoff. With initial promising results, this adaptation measure seemed to be the solution for urban flooding due to extreme precipitation.However, in practice, foreseen infiltration capacities were usually not met, often due to unknown reasons. To better understand the functioning of permeable pavements in practice, we have studied - as part of the project Infiltrating Cities - over 100 existing permeable pavement installations in the Netherlands. At each location, infiltration capacity was tested through a full-scale infiltration testing procedure (flooded area about 40 m2) while conditional on-site factors were collected (location, age, type of permeable pavement, street-type, traffic density, vicinity of urban green, regular maintenance regime, etc.). By coupling this information we analyzed how these factors influence the infiltration capacity of permeable pavements in practice, e.g. through accelerated deterioration of infiltration capacity through time. In addition, we evaluated for a selected number of installations, how various types of maintenance may counteract this deterioration, hence improving the infiltration capacity of permeable pavements.
DOCUMENT
Climate change and changing land use challenge the livability and flood safety of Dutch cities. One option cities have to become more climate-proof is to increase infiltration of stormwater into soil through permeable pavement and thus reduce discharge of stormwater into sewer systems. To analyze the market receptivity for permeable pavements in the Netherlands, this article focuses on the perception of end-users towards key transition factors in the infrastructure transformation processes. Market receptivity was studied on two levels: (1) on the system level, by analyzing 20 key factors in the Dutch urban water sector that enable wider application of permeable pavements; and (2) on the technology level, by analyzing 12 key factors that explain why decision makers select permeable pavements or not. Results show that trust between cooperating partners was perceived as the system level key factor that needs to be improved most to facilitate the wider uptake of permeable pavements. Additionally, the association of end-users with permeable pavement, particularly their willingness to apply these technologies and their understanding of what kinds of benefits these technologies could bring, was regarded the most important receptivity attribute. On the technology level, the reliability of permeable pavement was regarded as the most important end-user consideration for selecting this technology.
DOCUMENT
A baseline study was performed to characterize the stormwater quality from the upstream roofs and road areas. Results showed variations in stormwater quality. This may inhibit single-step treatment performance. Therefore, a ‘treatment train’ of several SUDS measures was developed in order to achieve high pollutionremoval rates and to help prevent loss of valuable archaeological deposits and thereby reduce subsidence.
DOCUMENT
This research used a newly developed, full-scale infiltration testing (FSIT) procedure to determine the saturated surface infiltration rate of 16 existing permeable pavement installations in the Netherlands that have been in service for a number of years. Newly installed permeable pavements in the Netherlands must demonstrate a minimum infiltration capacity of 194 mm/h (540 L/s/ha). Only four of the 16 pavements tested in this study had an infiltration capacity higher than 194 mm/h. Most previous research has focused on unsaturated infiltration rates. However, the results of this study show that the difference in infiltration capacity between saturated and unsaturated can differ by up to 300%. If the unsaturated infiltration capacity is used as design input for computer models, the infiltration capacity may be significantly overestimated. The study demonstrated that the FSIT method is a reliable and accurate way to measure surface infiltration rates of permeable pavements. However, it is recommended that a minimum of three different FSIT tests should be undertaken at the same pavement location, and that the results should be averaged, to ensure appropriate infiltration rates are observed, recorded, and used in design. The results of this study should help stormwater managers with the planning, testing, and scheduling of maintenance requirements for permeable pavements with more confidence so that they will continue to perform satisfactorily over their intended design life
DOCUMENT
Permeable pavements are a type of SUDS that are becoming more common to allow infiltration, to minimize runoff volumes and to treat urban water stormwater by soil filtration. However, urban stormwater runoff contains significant concentrations of suspended sediments that can cause clogging and reduce the infiltration capacity and effectiveness of permeable pavements. This study used a full-scale infiltration test procedure to evaluate the infiltration performance of 20 permeable pavements that have been in service for over 2 to 9 years in the Netherlands. The observed infiltration capacities range between 20 and 342 mm/h.
DOCUMENT
Stormwater runoff can contain high amounts of Potential Toxic Elements (PTE) as heavy metals. PTE can have negative and direct impact on the quality of surface waters and groundwater. The European Water Framework Directive (WFD) demands enhanced protection of the aquatic environment. As a consequence, the WFD requires municipalities and water authorities to address the emissions from drainage systems adequately and to take action when these emissions affect the quality of receiving waters together with mitigating the quantity challenges in a changing climate (floodings and drought). NBS is the most widely used method for storing stormwater and infiltrating in the Netherlands. However, there is still too little knowledge about the long-term functioning of the soil of these facilities. The research results are of great importance for all stakeholders in (inter)national cities that are involved in climate adaptation. Applying Nature-Based Solutions (NBS), Sustainable Urban Drainage Systems (SuDS) or Water Sensitive Urban Design (WSUD) are known to improve the water quality in the urban water cycle. The efficiency of NBS, such as the capability of bio swales to trap PTE, highly depends on the dimensions of the facility and on its implementation in the field [Woods Ballard, B et al, 2015]. For the determination of the removal efficiency of NBS information about stormwater quality and characteristics is essential. Acquiring the following information is strongly advised [Boogaard et al. 2014]:1. stormwater quality levels (method: stormwater quality database);2. location of NBS (method: mapping NBS in international database);3. behaviour of pollutants (method: cost effective mapping pollutants in the field). Stormwater quality contains pollutants as heavy metal in higher concentrations than water quality standards dictate. Over 500 locations with bio swales are mapped in the Netherlands which is a fraction of stormwater infiltration locations implemented in 20 years’ time. Monitoring of all these NBS would acquire high capacity and budget from the Dutch resources. This quick scan XRF mapping methodology of topsoil will indicate if the topsoil is polluted and whether the concentrations exceed national or international standards. This was only the case in one of the youngest pilots in Utrecht indicating that there are multiple factors other than age (traffic intensity, use of materials, storage volume, maintenance, run off quality, etc.). Several locations show unacceptable levels, above the national thresholds for pollutants where further research on the prediction of these levels in relation to multiple factors will be the subject of future research.The results of study are shared in 2 national workshops and valued as of great importance for all stakeholders in (inter)national cities that are involved in implementation of NBS for climate adaptation. The Dutch research results will be used to update (inter-)national guidelines for design, construction and maintenance of infiltration facilities this year. Stormwater managers are strongly advised to use this quick scan method within the first 10 years after implementation of swales to map possible pollution of the top soil and prevent pollution to spread to the groundwater in urban areas.
DOCUMENT
Swales are widely used Sustainable Urban Drainage Systems (SuDS) that can reduce peak flow, collect and retain water and improve groundwater recharge. Most previous research has focused on the unsaturated infiltration rates of swales without considering the variation in infiltration rates under extreme climate events, such as multiple stormwater events after a long drought period. Therefore, fieldwork was carried out to collect hydraulic data of three swales under drought conditions followed by high precipitation. For this simulation, a new full-scale infiltration method was used to simulate five rainfall events filling up the total storage volume of the swales under drought conditions. The results were then compared to earlier research under regular circumstances. The results of this study show that three swales situated in the same street show a variation in initial infiltration capacity of 1.6 to 11.9 m/d and show higher infiltration rates under drought conditions. The saturated infiltration rate is up to a factor 4 lower than the initial unsaturated rate with a minimal rate of 0.5 m/d, close to the minimum required infiltration rate. Significant spatial and time variable infiltration rates are also found at similar research locations with multiple green infrastructures in close range. If the unsaturated infiltration capacity is used as the design input for computer models, the infiltration capacity may be significantly overestimated. The innovative method and the results of this study should help stormwater managers to test, model, plan and schedule maintenance requirements with more confidence, so that they will continue to perform satisfactorily over their intended design lifespan.
DOCUMENT