This study focuses on characterising stormwater in order to be able to determine the impact of stormwater on receiving waters and to be able to select the most appropriate stormwater handling strategy
DOCUMENT
Stormwaters, flowing into storm sewers, are known to significantly increase the annual pollutant loads entering urban receiving waters and this results in significant degradation of the receiving water quality. Knowledge of the characteristics of stormwater pollution enables urban planners to incorporate the most appropriate stormwater management strategies to mitigate the effects of stormwater pollution on downstream receiving waters. This requires detailed information on stormwater quality, such as pollutant types, sediment particle size distributions, and how soluble pollutants and heavy metals attach themselves to sediment particles. This study monitored stormwater pollution levels at over 150 locations throughout the Netherlands. The monitoring has been ongoing for nearly 15 years and a total of 7,652 individual events have been monitored to date. This makes the database the largest stormwater quality database in Europe. The study compared the results to those presented in contemporary international stormwater quality research literature. The study found that the pollution levels at many of the Dutch test sites did not meet the requirements of the European Water Framework Directive (WFD) and Dutch Water Quality Standards. Results of the study are presented and recommendations are made on how to improve water quality with the implementation of Sustainable Urban Drainage Systems (SUDS) devices.
DOCUMENT
A baseline study was performed to characterize the stormwater quality from the upstream roofs and road areas. Results showed variations in stormwater quality. This may inhibit single-step treatment performance. Therefore, a ‘treatment train’ of several SUDS measures was developed in order to achieve high pollutionremoval rates and to help prevent loss of valuable archaeological deposits and thereby reduce subsidence.
DOCUMENT
SummaryConstructed wetlands have been used for decades on industrial areas to treat stormwater. European regulations and local ambitions for water quality dictate lower emissions before the water is discharged to the drainage system, surface water or infiltrated to ground water. The increase in the required removal efficiency requires a better understanding of the characteristics of pollutants and cost-effective performance of constructed wetlands. In this chapter detailed characteristics of stormwater from (industrial) areas is given together with monitored removal efficiencies and the cost of constructed wetlands. Some case studies with constructed wetlands are selected and reviewed in this chapter which can be regarded as Best Management Practices (BMPs). In most cases the constructed wetlands are not monitored in detail but perceived to be effective. Long-term performance, however, remains an issue. New monitoring techniques such as underwater drones and full scale testing can be applied to get new insights on optimizing the hydraulic capacity and removal efficiency of wetlands. Last but not least: international knowledge exchange on constructed wetlands and new monitoring techniques can be promoted by interactive online tools.
DOCUMENT
Floating wetland treatment systems (FWTS) are an innovative stormwater treatment technology currently being trialled on a larger scale in Australia. FWTS provide support for selected plant species to remove pollutants from stormwater discharged into a water body. The plant roots provide large surface areas for biofilm growth, which serves to trap suspended particles and enable the biological uptake of nutrients by the plants. As FWTS can be installed at the start of the construction phase, they can start treating construction runoff almost immediately. FWTS therefore have the potential to provide the full range of stormwater treatment (e.g. sediment and nutrient removal) from the construction phase onwards. A 2,100m 2 FWTS has been installed within a greenfield development site on the Sunshine Coast, Queensland. A four-year research study is currently underway which will target the following three objectives; (1) characterise the water quality of runoff from a greenfield development in the construction and operational phases; (2) verify the stormwater pollution removal performance of a FWTS during the construction and operational phases of a greenfield development; and (3) characterise the ability of FWTS to manage urban lake health. This extended abstract presents the proposed research methodology and anticipated outcomes of the study
MULTIFILE
Sedimentation devices have been widely implemented to remove suspended solids and attached pollutants from stormwater before entering surface waters. The treatment performance of these best management practices (BMPs) on fine particles is rarely investigated in a standardized way. To overcome this information gap a reliable and standardized testing procedure is formulated.Four devices have been tested on their suspended sediments removal efficiency at different discharges and particle sizes, using the newly developed standardized full scale test method. The observed removal rates of the facilities with a storage volume in the order of 1.5 m3 and settling surface around 1 m2 drop to low removal efficiencies at flow rates of 10 l/s or more. For small sized sediments (up to 63 μm) the removal efficiency is below 50%. The results of the experiments can be used to improve both the design and the dimensions of stormwater treatment devices.
LINK
Global society is confronted with various challenges: climate change should be mitigated, and society should adapt to the impacts of climate change, resources will become scarcer and hence resources should be used more efficiently and recovered after use, the growing world population and its growing wealth create unprecedented emissions of pollutants, threatening public health, wildlife and biodiversity. This paper provides an overview of the challenges and risks for sewage systems, next to some opportunities and chances that these developments pose. Some of the challenges are emerging from climate change and resource scarcity, others come from the challenges emerging from stricter regulation of emissions. It also presents risks and threats from within the system, next to external influences which may affect the surroundings of the sewage systems. It finally reflects on barriers to respond to these challenges. http://dx.doi.org/10.13044/j.sdewes.d6.0231 LinkedIn: https://www.linkedin.com/in/sabineeijlander/ https://www.linkedin.com/in/karel-mulder-163aa96/
MULTIFILE
Climate change and urbanization will increase the frequency and magnitude of urban flooding and water quality problems in many regions of the world. In coastal and delta areas like The Netherlands and the Philippines, where urbanization is often high, there has been an increase in the adoption of sustainable urban drainage systems (SUDS). SUDS are installed around the world with the expectation to reduce urban flooding and reduce the pollution impact on receiving waters. Most cities in Asia are starting to implement SUDS as their strategy to make their cities sustainable and resilient.The combination of SUDS with appropriate wastewater treatment and management systems have the potential to be multifunctional in alleviating flood run-off, improving water quality, alleviating heat stress and as a source for reusing the stormwater and wastewater.Since the earliest SUDS are implemented in Europe decades ago it is advised to use the lessons learnt in this process. International knowledge exchange is promoted in projects as IWASTO where several organisations from the Philippines and The Netherlands join forces on a specific region as the Pateros riverin Manila with the aim to minimise the pollution impact on this receiving water. The first findings of this project related to storm water and wastewater management are presented in this paper. In this stage of the project high level support models that map the challenges in the city (such as flooding and heatstress) arevaluable tools for implementing cost effective sustainable drainage for improving water quality.
DOCUMENT
Aim and method: To examine in obese people the potential effectiveness of a six-week, two times weekly aquajogging program on body composition, fitness, health-related quality of life and exercise beliefs. Fifteen otherwise healthy obese persons participated in a pilot study. Results: Total fat mass and waist circumference decreased 1.4 kg (p = .03) and 3.1 cm (p = .005) respectively. The distance in the Six-Minute Walk Test increased 41 meters (p = .001). Three scales of the Impact of Weight on Quality of Life-Lite questionnaire improved: physical function (p = .008), self-esteem (p = .004), and public distress (p = .04). Increased perceived exercise benefits (p = .02) and decreased embarrassment (p = .03) were observed. Conclusions: Aquajogging was associated with reduced body fat and waist circumference, and improved aerobic fitness and quality of life. These findings suggest the usefulness of conducting a randomized controlled trial with long-term outcome assessments.
DOCUMENT
Het doel van het onderzoek is om te bepalen welke voordelen de fusie van PET-CT en MRI-CT hebben in het voorbereidingstraject van de behandeling van de gynaecologische patiënt met radiotherapie ten opzichte van CT alleen. Hierbij is gekeken naar voordelen met betrekking tot intekenen van doelvolumina en risico organen, effecten op intekenvariaties en ook de effecten op het bestralingsplan. Vooral MRI blijkt nuttig te zijn voor de intekening van lymfeklieren, het gebruik van PET in combinatie met CT laat een afname van het doelvolume zien van de primaire tumor. Bij het maken van het bestralingsplan wordt het gebruik van één van beide modaliteiten daarom aanbevolen.
DOCUMENT