One of the main aims of game AI research is the building of challenging and believable artificial opponents that act as if capable of strategic thinking. In this paper we describe a novel mechanism that successfully endows NPCs in real-time games with strategic planning capabilities. Our approach creates adaptive behaviours that take into account long-term and short term consequences. Our approach is unique in that: (i) it is sufficiently fast to be used for hundreds of agents in real time; (ii) it is flexible in that it requires no previous knowledge of the playing field; and (iii) it allows customization of the agents in order to generate differentiated behaviours that derive from virtual personalities.
One of the main aims of game AI research is the building of challenging and believable artificial opponents that act as if capable of strategic thinking. In this paper we describe a novel mechanism that successfully endows NPCs in real-time games with strategic planning capabilities. Our approach creates adaptive behaviours that take into account long-term and short term consequences. Our approach is unique in that: (i) it is sufficiently fast to be used for hundreds of agents in real time; (ii) it is flexible in that it requires no previous knowledge of the playing field; and (iii) it allows customization of the agents in order to generate differentiated behaviours that derive from virtual personalities.
Serious gaming is an interdisciplinary and co-creative research methodology, which allows participants to proactively engage in role-playing and co-creating strategies. During the gameplay session, various game mechanisms trigger individual, social, and collective learning outcomes of the players, which in the end can lead to a change in the individual belief system towards the subject. Despite demonstrating its applicability in other complex domains, such as maritime spatial planning or urban development, an investigation into the applicability of serious games within the tourism domain is scarce. In conceiving the process of tourism planning as a strategic plan with dependent actors, resources, objectives, and challenges in a multi-layered decision-making process, creating or re-creating such strategic games can be beneficial to promote the understanding and change of belief systems among stakeholders. A particularly critically question is how serious gaming is able to generate qualitative research inquiries in order to shed more light on the complexities of the tourism destination planning process. Destination planning research can profit from new disruptive methods, such as serious gaming, for a more experimental and explorative approach in understanding the interconnectedness of tourism stakeholders, as well as estimations of short and long-term impact of decisions on a destination. By enabling strategic conversation about tourism planning issues, serious gaming functions as a strategic learning tool that provides opportunities for individual and community learning. Besides practical and conceptual implications, a set of future research avenues are provided that will enhance the qualitative research paradigm.
LINK
The impacts of tourism on destinations and the perceptions of local communities have been a major concern both for the industry and research in the past decades. However, tourism planning has been mainly focused on traditions that promote the increase of tourism without taking under consideration the wellbeing of both residents and visitors. To develop a more sustainable tourism model, the inclusion of local residents in tourism decision-making is vital. However, this is not always possible due to structural, economic and socio-cultural restrictions that residents face resulting to their disempowerment. This study aims to explore and interpret the formal processes around tourism decision-making and community empowerment in urban settings. The research proposes a comparative study of three urban destinations in Europe (The Hague in the Netherlands, San Sebastian in Spain and, Ioannina in Greece) that experience similar degree of tourism growth. The proposed study will use a design-based approach in order to understand tourism decision-making and what empowers or disempowers community participation within the destinations. Based on the findings of primary and secondary data, a community empowerment model will be applied in one the destinations as a pilot for resident engagement in tourism planning. The evaluation of the pilot will allow for an optimized model to be created with implications for tourism planning at a local level that can contribute to sustainable destinations that safeguard the interests of local residents and tourists.
The IMPULS-2020 project DIGIREAL (BUas, 2021) aims to significantly strengthen BUAS’ Research and Development (R&D) on Digital Realities for the benefit of innovation in our sectoral industries. The project will furthermore help BUas to position itself in the emerging innovation ecosystems on Human Interaction, AI and Interactive Technologies. The pandemic has had a tremendous negative impact on BUas industrial sectors of research: Tourism, Leisure and Events, Hospitality and Facility, Built Environment and Logistics. Our partner industries are in great need of innovative responses to the crises. Data, AI combined with Interactive and Immersive Technologies (Games, VR/AR) can provide a partial solution, in line with the key-enabling technologies of the Smart Industry agenda. DIGIREAL builds upon our well-established expertise and capacity in entertainment and serious games and digital media (VR/AR). It furthermore strengthens our initial plans to venture into Data and Applied AI. Digital Realities offer great opportunities for sectoral industry research and innovation, such as experience measurement in Leisure and Hospitality, data-driven decision-making for (sustainable) tourism, geo-data simulations for Logistics and Digital Twins for Spatial Planning. Although BUas already has successful R&D projects in these areas, the synergy can and should significantly be improved. We propose a coherent one-year Impuls funded package to develop (in 2021): 1. A multi-year R&D program on Digital Realities, that leads to, 2. Strategic R&D proposals, in particular a SPRONG/sleuteltechnologie proposal; 3. Partnerships in the regional and national innovation ecosystem, in particular Mind Labs and Data Development Lab (DDL); 4. A shared Digital Realities Lab infrastructure, in particular hardware/software/peopleware for Augmented and Mixed Reality; 5. Leadership, support and operational capacity to achieve and support the above. The proposal presents a work program and management structure, with external partners in an advisory role.
KnowledgeFlows in Marine Spatial Planning - Sharing Innovation in Higher Education(KnowledgeFlows) aims at further enforcing the European higher education community to meet the growing demands for knowledge, skills and innovation within the still emerging field of marine or maritime spatial planning (MSP).Marine Spatial Planning (MSP) is an emerging governmental approach towards a more effective use of the sea. MSP is of great interest in Europe and can be considered a societal process to balance conflicting interests of maritime stakeholders and the marine environment. Many different activities take place at sea, ranging from shipping, fisheries, to offshore wind energy activities. Simultaneously, new and evolving policies focus on strategies to integrate different marine demands in space and resources. MSP is now legally binding in the EU and is much needed approach to manage and organize the use of the sea, while also protecting the environment.KnowledgeFlows will contribute to the development of new innovative approaches to higher education and training on MSP by means of problem-based learning schemes, transdisciplinary collaboration, and advanced e-learning concepts. KnowledgeFlows builds on results from former project outputs (Erasmus+ Strategic Partnership for Marine Spatial Planning SP-MSP), such as the online learning platform MSP Education Arena (https://www.sp-msp.uol.de).The strategic partnership consists of a transnational network of experts both in research and in practice based in the north Atlantic, Baltic Sea and North Sea Regions including Aalborg University (DK, lead partner), The University of Oldenburg (D), the University of Liverpool (U.K.), the University of Nantes (F), the Leibniz Institute for Baltic Sea Research (D), the Breda University of Applied Sciences (NL), University of Ulster (U.K.), and the Finnish Environment Institute (FI). Gothenburg University, also being a higher education organisation, will be associated partner.Furthermore, three international organisations, the Marine Spatial Planning Research Network, the Baltic inter-governmental VASAB and the pan-Nordic Nordregio will be involved in the partnership as associated organisations deeply rooted in the MSP community of practice.The further improvement of curricula, exchange of knowledge and experts, and transparency and recognition of learning outcomes to reach higher qualifications in MSP are key components of KnowledgeFlows. A mutual learning environment for MSP higher education will enable problem-driven innovation among students and their educators from research and governance also involving stakeholders. Related activities on intellectual outputs, multiplier events and lecturing will be carried out by all participating organisations.The intellectual outputs are related to three major contributions to the European higher education landscape:1) an advanced level international topical MSP course (Step-up MSP)2) digital learning facilities and tools (MSP Education Arena)3) designing problem-based learning in MSP (MSP directory)The advanced level inter-institutional topical MSP course will include different teaching and training activities within a problem-based learning environment. Digital learning facilities enabling communication and training will include a further enrichment of the MSP Education Arena platform for students, practitioners and lecturers for including modules forcollaborate learning activities, documentation and dissemination, mobilisation/recruitment, thesis opportunities, placements/internships. Designing problem-based learning in MSP will include topics as; the design of didactics and methods; guidance for lecturers, supervisors and students; evaluation and quality assurance; assessment.Five multiplier events back to back or as part of conferences within the MSP community will be organised to mainstream the outputs and innovative MSP didactics among other universities and institutions.Different teaching and training activities feeds into the intellectual output activities, which will include serious gaming sessions (MSP Challenge (http://www.mspchallenge.info/) and others), workshops, excursions, courses/classes as well as a conference with a specific focus on facilitating the exchange of innovative ideas and approaches among students at bachelor´s, master´s and doctoral level and the MSP community of practice.Project management meetings (twice a year) will assure coherence in project planning and implementation. As the core focus of the strategic partnership is on collaboration, mutual learning, and innovation among educators, students, and practitioners in order to meet actual and future needs regarding knowledge exchange and training within the MSP community, the project will be designed to have long lasting effects.Results