Psychophysiological measurements have so far been used to express player experience quantitatively in game genres such as shooter games and race games. However, these methods have not yet been applied to casual video games. From a development point of view, games developed in the casual sector of the games industry are characterized by very short production cycles which make them ill-suited for complex and lengthy psychophysiological testing regimes. This paper discusses some methodological innovations that lead to the application of psychophysiological measurements to enhance the design of a commercially released casual game for the Apple iPad, called 'Gua-Le-Ni'; or, The Horrendous Parade'. The game was tested in different stages of its development to dry-run a cycle of design improvements derived from psychophysiological data. The tests looked at the correlation between stress levels and the contraction of facial muscles with in-game performance in order to establish whether 'Gua-Le-Ni' offered the cognitive challenge, the learning curve, and the enjoyment the designers had in mind for this product. In this paper, we discuss the changes that were made to the game and the data-analysis that led to these changes.
A poem about the role screenshots can play in our lives, our minds, our poetry. When does the personal become universal, and when does the digital become lyrical?
MULTIFILE
Introduction: Strenuous physical stress induces a range of physiological responses, the extent depending, among others, on the nature and severity of the exercise, a person’s training level and overall physical resilience. This principle can also be used in an experimental set-up by measuring time-dependent changes in biomarkers for physiological processes. In a previous report, we described the effects of workload delivered on a bicycle ergometer on intestinal functionality. As a follow-up, we here describe an analysis of the kinetics of various other biomarkers. Aim: To analyse the time-dependent changes of 34 markers for different metabolic and immunological processes, comparing four different exercise protocols and a rest protocol. Methods: After determining individual maximum workloads, 15 healthy male participants (20–35 years) started with a rest protocol and subsequently performed (in a cross-over design with 1-week wash-out) four exercise protocols of 1-h duration at different intensities: 70% Wmax in a hydrated and a mildly dehydrated state, 50% Wmax and intermittent 85/55% Wmax in blocks of 2 min. Perceived exertion was monitored using the Borg’ Rating of Perceived Exertion scale. Blood samples were collected both before and during exercise, and at various timepoints up to 24 h afterward. Data was analyzed using a multilevel mixed linear model with multiple test correction. Results: Kinetic changes of various biomarkers were exercise-intensity-dependent. Biomarkers included parameters indicative of metabolic activity (e.g., creatinine, bicarbonate), immunological and hematological functionality (e.g., leukocytes, hemoglobin) and intestinal physiology (citrulline, intestinal fatty acid-binding protein, and zonulin). In general, responses to high intensity exercise of 70% Wmax and intermittent exercise i.e., 55/85% Wmax were more pronounced compared to exercise at 50% Wmax. Conclusion: High (70 and 55/85% Wmax) and moderate (50% Wmax) intensity exercise in a bicycle ergometer test produce different time-dependent changes in a broad range of parameters indicative of metabolic activity, immunological and hematological functionality and intestinal physiology. These parameters may be considered biomarkers of homeostatic resilience. Mild dehydration intensifies these time-related changes. Moderate intensity exercise of 50% Wmax shows sufficient physiological and immunological responses and can be employed to test the health condition of less fit individuals.