Background: Cervical dystonia is characterized by involuntary muscle contractions of the neck and abnormal head positions that affect daily life activities and social life of patients. Patients are usually treated with botulinum toxin injections into affected neck muscles to relief pain and improve control of head postures. In addition, many patients are referred for physical therapy to improve their ability to perform activities of daily living. A recent review on allied health interventions in cervical dystonia showed a lack of randomized controlled intervention studies regarding the effectiveness of physical therapy interventions.Methods/design: The (cost-) effectiveness of a standardized physical therapy program compared to regular physical therapy, both as add-on treatment to botulinum toxin injections will be determined in a multi-centre, single blinded randomized controlled trial with 100 cervical dystonia patients. Primary outcomes are disability in daily functioning assessed with the disability subscale of the Toronto Western Spasmodic Torticollis Rating Scale. Secondary outcomes are pain, severity of dystonia, active range of motion of the head, quality of life, anxiety and depression. Data will be collected at baseline, after six months and one year by an independent blind assessor just prior to botulinum toxin injections. For the cost effectiveness, an additional economic evaluation will be performed with the costs per quality adjusted life-year as primary outcome parameter.Discussion: Our study will provide new evidence regarding the (cost-) effectiveness of a standardized, tailored physical therapy program for patients with cervical dystonia. It is widely felt that allied health interventions, including physical therapy, may offer a valuable supplement to the current therapeutic options. A positive outcome will lead to a greater use of the standardized physical therapy program. For the Dutch situation a positive outcome implies that the standardized physical therapy program forms the basis for a national treatment guideline for cervical dystonia.Trial registration: Number Dutch Trial registration (Nederlands Trial Register): NTR3437.
Background: Physical therapy is regarded an effective treatment for temporomandibular disorders (TMD). Patients with TMD often report concomitant headache. There is, however, no overview of the effect of physical therapy for TMD on concomitant headache complaints. Objectives: The aim of this study is to systematically evaluate the literature on the effectiveness of physical therapy on concomitant headache pain intensity in patients with TMD. Data sources: PubMed, Cochrane and PEDro were searched. Study eligibility criteria: Randomized or controlled clinical trials studying physical therapy interventions were included. Participants: Patients with TMD and headache. Appraisal: The Cochrane risk of bias tool was used to assess risk of bias. Synthesis methods: Individual and pooled between-group effect sizes were calculated according to the standardized mean difference (SMD) and the quality of the evidence was rated using the GRADE approach. Results: and manual therapy on both orofacial region and cervical spine. There is a very low level of certainty that TMD-treatment is effective on headache pain intensity, downgraded by high risk of bias, inconsistency and imprecision. Limitations: The methodological quality of most included articles was poor, and the interventions included were very different. Conclusions: Physical therapy interventions presented small effect on reducing headache pain intensity on subjects with TMD, with low level of certainty. More studies of higher methodological quality are needed so better conclusions could be taken.
Background: Improved preferred gait speed in older adults is associated with increased survival rates. There are inconsistent findings in clinical trials regarding effects of exercise on preferred gait speed, and heterogeneity in interventions in the current reviews and meta-analyses. Objective: to determine the meta-effects of different types or combinations of exercise interventions from randomized controlled trials on improvement in preferred gait speed. Methods: Data sources: A literature search was performed; the following databases were searched for studies from 1990 up to 9 December 2013: PubMed, EMBASE, EBSCO (AMED, CINAHL, ERIC, Medline, PsycInfo, and SocINDEX), and the Cochrane Library. Study eligibility criteria: Randomized controlled trials of exercise interventions for older adults ≥ 65 years, that provided quantitative data (mean/SD) on preferred gait speed at baseline and post-intervention, as a primary or secondary outcome measure in the published article were included. Studies were excluded when the PEDro score was ≤4, or if participants were selected for a specific neurological or neurodegenerative disease, Chronic Obstructive Pulmonary Disease, cardiovascular disease, recent lower limb fractures, lower limb joint replacements, or severe cognitive impairments. The meta-effect is presented in Forest plots with 95 % confidence Study appraisal and synthesis methods: intervals and random weights assigned to each trial. Homogeneity and risk of publication bias were assessed. Results: Twenty-five studies were analysed in this meta-analysis. Data from six types or combinations of exercise interventions were pooled into sub-analyses. First, there is a significant positive meta-effect of resistance training progressed to 70-80 % of 1RM on preferred gait speed of 0.13 [CI 95 % 0.09-0.16] m/s. The difference between intervention- and control groups shows a substantial meaningful change (>0.1 m/s). Secondly, a significant positive meta-effect of interventions with a rhythmic component on preferred gait speed of 0.07 [CI 95 % 0.03-0.10] m/s was found. Thirdly, there is a small significant positive meta-effect of progressive resistance training, combined with balance-, and endurance training of 0.05 [CI 95 % 0.00-0.09] m/s. The other sub-analyses show non-significant small positive meta-affects. Conclusions: Progressive resistance training with high intensities, is the most effective exercise modality for improving preferred gait speed. Sufficient muscle strength seems an important condition for improving preferred gait speed. The addition of balance-, and/or endurance training does not contribute to the significant positive effects of progressive resistance training. A promising component is exercise with a rhythmic component. Keeping time to music or rhythm possibly trains higher cognitive functions that are important for gait. Limitations: The focus of the present meta-analysis was at avoiding as much heterogeneity in exercise interventions. However heterogeneity in the research populations could not be completely avoided, there are probably differences in health status within different studies.