Recently, there has been an increased interest in the well-being of students in higher education. Despite the widespread consensus on the importance of student well-being, a clear definition continues to be lacking. This study qualitatively examined the student perspective on the topic through semi-structured interviews at a university of applied sciences in the Netherlands (n = 27). A major recurring theme was well-being as a balance in the interplay between efforts directed towards studies and life beyond studies. This method of perceiving well- being deviates from theoretical definitions. Students mentioned various factors that influence their well-being. Responses ranged from personal and university related factors to external factors beyond their educational institution. This study contributes to the body of knowledge on the well-being of students in higher education and provides suggestions for educational institutions, such as incorporating a holistic perspective on students and learning; and focus points for the development of policies and practices.
MULTIFILE
Qualitative and quantitative research methods were used to establish the role of the website in the educational process of Bedrijfsmanagement MKB students, and the use of the website in the student recruitment process.
This project studies whether a redesigned baccalaureate nursing curriculum in a University of Applied Sciences in the Netherlands can stimulate positive interest for the field of community care. In many Western countries, healthcare is changing from institutional care delivery to caring for patients in their own homes. Problematic is that most nursing students orientate on a career in the hospital and they do not see community care as an attractive option, due to a limited and often mistaken view of the field. Their career choices lead to increasing shortages in the labour market, which in many Western countries is a societal problem urgently needing attention. Providing students with a curriculum with more elements of community nursing could help them build a more positive perception of the field, leading to more students choosing this area as a career.The curriculum-redesign was based on quantitative and qualitative research about first-year students’ perceptions, placement preferences and underlying assumptions on the field. First, a cross-sectional multicentre survey study (n = 1058) was conducted using the SCOPE (Scale on COmmunity care PErceptions) questionnaire. The findings confirm the hospital’s popularity, with community care being perceived as a ‘low-status-field’ with many elderly patients and few challenges. Students’ perceptions of community care appear to be at odds with things they consider important for their placement (i.e., opportunities for advancement and enjoyable relationships with patients).To better understand the factors underlying the perceptions, a focus group study with first-year students at the start of their programme (n = 16) was performed.This led to formulation of eight redesign themes, namely:(1) variety and diversity,(2) challenges,(3) improving people's health,(4) collaboration,(5) role models,(6) patient- or environment-based perceptions,(7) self-efficacy, and(8) immediate vicinity.First-year students have clear ideas about what they see as important in a placement, but their perceptions do not always appear to be realistic.To remedy these misperceptions, recommendations for curriculum redesign strategies were formulated. Curriculum designers can more prominently highlight the complexity of community nursing in the theory part of the curriculum. As many students strive for challenges, in-depth knowledge about community nursing can be presented about aspects that students lacking experience in the field are not aware of (e.g., working in an interprofessional network). In the courses, patient cases can be presented that do not fit the stereotypical views of community care commonly held. Also, as role models are influential, it is important that students collaborate with mentors in the field with an appropriate level of education, who can act as a source of inspiration, but who also create a structured and supporting learning environment. Finally, it is useful to organise meetings where political developments and labour market issues in healthcare are discussed. This can potentially increase awareness of these topics and contribute to well-informed career decisions. These strategies can potentially foster a more optimistic and realistic career outlook on the community care field.
Examining in-class activities to facilitate academic achievement in higher educationThere is an increasing interest in how to create an effective and comfortable indoor environment for lecturers and students in higher education. To achieve evidence-based improvements in the indoor environmental quality (IEQ) of higher education learning environments, this research aimed to gain new knowledge for creating optimal indoor environmental conditions that best facilitate in-class activities, i.e. teaching and learning, and foster academic achievement. The academic performance of lecturers and students is subdivided into short-term academic performance, for example, during a lecture and long-term academic performance, during an academic course or year, for example. First, a systematic literature review was conducted to reveal the effect of indoor environmental quality in classrooms in higher education on the quality of teaching, the quality of learning, and students’ academic achievement. With the information gathered on the applied methods during the literature review, a systematic approach was developed and validated to capture the effect of the IEQ on the main outcomes. This approach enables research that aims to examine the effect of all four IEQ parameters, indoor air quality, thermal conditions, lighting conditions, and acoustic conditions on students’ perceptions, responses, and short-term academic performance in the context of higher education classrooms. Next, a field experiment was conducted, applying the validated systematic approach, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. Finally, a qualitative case study gathered lecturers’ and students’ perceptions related to the IEQ. Furthermore, how these users interact with the environment to maintain an acceptable IEQ was studied.During the systematic literature review, multiple scientific databases were searched to identify relevant scientific evidence. After the screening process, 21 publications were included. The collected evidence showed that IEQ can contribute positively to students’ academic achievement. However, it can also affect the performance of students negatively, even if the IEQ meets current standards for classrooms’ IEQ conditions. Not one optimal IEQ was identified after studying the evidence. Indoor environmental conditions in which students perform at their best differ and are task depended, indicating that classrooms should facilitate multiple indoor environmental conditions. Furthermore, the evidence provides practical information for improving the design of experimental studies, helps researchers in identifying relevant parameters, and lists methods to examine the influence of the IEQ on users.The measurement methods deduced from the included studies of the literature review, were used for the development of a systematic approach measuring classroom IEQ and students’ perceived IEQ, internal responses, and short-term academic performance. This approach allowed studying the effect of multiple IEQ parameters simultaneously and was tested in a pilot study during a regular academic course. The perceptions, internal responses, and short-term academic performance of participating students were measured. The results show associations between natural variations of the IEQ and students’ perceptions. These perceptions were associated with their physiological and cognitive responses. Furthermore, students’ perceived cognitive responses were associated with their short-term academic performance. These observed associations confirm the construct validity of the composed systematic approach. This systematic approach was then applied in a field experiment, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. A field study, with a between-groups experimental design, was conducted during a regular academic course in 2020-2021 to analyze the effect of different acoustic, lighting, and indoor air quality (IAQ) conditions. First, the reverberation time was manipulated to 0.4 s in the intervention condition (control condition 0.6 s). Second, the horizontal illuminance level was raised from 500 to 750 lx in the intervention condition (control condition 500 lx). These conditions correspond with quality class A (intervention condition) and B (control condition), specified in Dutch IEQ guidelines for school buildings (2015). Third, the IAQ, which was ~1100 ppm carbon dioxide (CO2), as a proxy for IAQ, was improved to CO2 concentrations under 800 ppm, meeting quality class A in both conditions. Students’ perceptions were measured during seven campaigns with a questionnaire; their actual cognitive and short-term academic performances were evaluated with validated tests and an academic test, composed by the lecturer, as a subject-matter-expert on the taught topic, covered subjects discussed during the lecture. From 201 students 527 responses were collected and analyzed. A reduced RT in combination with raised HI improved students’ perceptions of the lighting environment, internal responses, and quality of learning. However, this experimental condition negatively influenced students’ ability to solve problems, while students' content-related test scores were not influenced. This shows that although quality class A conditions for RT and HI improved students’ perceptions, it did not influence their short-term academic performance. Furthermore, the benefits of reduced RT in combination with raised HI were not observed in improved IAQ conditions. Whether the sequential order of the experimental conditions is relevant in inducing these effects and/or whether improving two parameters is already beneficial, is unknownFinally, a qualitative case study explored lecturers’ and students’ perceptions of the IEQ of classrooms, which are suitable to give tutorials with a maximum capacity of about 30 students. Furthermore, how lecturers and students interact with this indoor environment to maintain an acceptable IEQ was examined. Eleven lecturers of the Hanze University of Applied Sciences (UAS), located in the northern part of the Netherlands, and twenty-four of its students participated in three focus group discussions. The findings show that lecturers and students experience poor thermal, lighting, acoustic, and IAQ conditions which may influence teaching and learning performance. Furthermore, maintaining acceptable thermal and IAQ conditions was difficult for lecturers as opening windows or doors caused noise disturbances. In uncomfortable conditions, lecturers may decide to pause earlier or shorten a lecture. When students experienced discomfort, it may affect their ability to concentrate, their emotional status, and their quality of learning. Acceptable air and thermal conditions in classrooms will mitigate the need to open windows and doors. This allows lecturers to keep doors and windows closed, combining better classroom conditions with neither noise disturbances nor related distractions. Designers and engineers should take these end users’ perceptions into account, often monitored by facility management (FM), during the renovation or construction of university buildings to achieve optimal IEQ conditions in higher education classrooms.The results of these four studies indicate that there is not a one-size fits all indoor environmental quality to facilitate optimal in-class activities. Classrooms’ thermal environment should be effectively controlled with the option of a local (manual) intervention. Classrooms’ lighting conditions should also be adjustable, both in light color and light intensity. This enables lecturers to adjust the indoor environment to facilitate in-class activities optimally. Lecturers must be informed by the building operator, for example, professionals of the Facility Department, how to change classrooms’ IEQ settings. And this may differ per classroom because each building, in which the classroom is located, is operated differently apart from the classroom location in the building, exposure to the environment, and its use. The knowledge that has come available from this study, shows that optimal indoor environmental conditions can positively influence lecturers’ and students’ comfort, health, emotional balance, and performance. These outcomes have the capacity to contribute to an improved school climate and thus academic achievement.