In eerste instantie wordt bij de term ‘drone’ vaak gedacht aan onbemande,op afstand bestuurbare, vliegtuigjes. Minder bekend is dat er ook dronesbestaan die onder water inzetbaar zijn. Deze ‘submerged drones’ kunnenworden gebruikt voor aquatisch ecologisch onderzoek.
DOCUMENT
Urban delta areas are facing problems related with land scarcity and are impacted by climate change and flooding. To meet the current demands and future challenges, innovative and adaptive urban developments are necessary [de Graaf, 2009]. Floating urban development is a promising solutions, as it offers the flexibility and multifunctionality required to efficiently face the current challenges for delta cities. It provides flood proof buildings and opportunities for sustainable food and energy production
LINK
Nano and micro polymeric particles (NMPs) are a point of concern by environmentalists and toxicologist for the past years. Their presence has been detected in many environmental bodies and even in more recently human blood as well. One of the most common paths these particles take to enter living organisms is via water consumption. However, despite the efforts of different academic and other knowledge groups, there is no consensus about standards methods which can be used to qualifying and quantifying these particles, especially the submicrometric ones. Many different techniques have been proposed like field flow fractionation (FFF) followed by multi angle laser scattering (MALS), pyrolysis-GC and scanning electron microscopy (SEM). Additionally, the sampling collection and preparation is also considered a difficult step, as such particles are mostly present in very low concentration. Nanocatcher proposes the use of submerged drones as a sampling collection tool to monitor the presence of submicrometric polymeric particles in water bodies. The sample collections will be done using special membrane systems specially designed for the drone. After collected, the samples will be analysed using FFF+MALS, SEM and Py-GC. If proven successful, the use of submerged drones can strongly facilitate sampling and mapping of submicrometric polymeric particles in water bodies and will provide an extensive and comprehensive map of the presence of these particles in such environment.