By 2050, 70% of the population will live in cities. The majority of the persons living in cities will be 60 plus years old. Ageing cities demands for cities environments to adapt to an ageing population. Modern cities though, don’t anticipate fast enough and in an adequate manner to face the challenges due to population-related transitions. Modifying and adapting the built environment with a focus on the aged population could help to support older people facing functional and cognitive decline.
MULTIFILE
One of the most important societal trends affecting our workplace and workforce in the following decade concerns the combination of a smaller number of younger workers relative to their older counterparts, and the current ‘early exit’ culture in Europe. Because of the staff shortages and possible knowledge loss (e.g., Calo 2008; Joe et al. 2013) that may accompany these demographic changes, there is a strong financial reason to retain and sustain ageing employees at work (Kooij et al. 2014; Truxillo and Fraccaroli 2013). In order to respond to today’s labour market needs, many governments have chosen to increase the official retirement age to 66 or even higher. In the Netherlands, for example, retirement age will be gradually raised to 66 years in 2019 and to 67 years in 2023. Other European Union countries have similar plans to steadily raise their retirement ages to 67 years in 2023 (France), 2027 (Spain), or 2031 (Germany). In the UK and Ireland, the retirement age will increase to 68 in 2028 (Ireland) and in 2046 (the UK). However, the reality of older workers’ current employment does not yet match these political ambitions. According to figures collected by the European Union Labour Force in the European Union Labour Force Survey (Eurostat 2014), the EU-28 (i.e., average of the 28 European Union countries) employment rate for persons aged 15–64 was 64.1 per cent in 2013. However, when looking more closely at the country level or when differentiating between age categories, the active labor participation of older European employees does not appear to be as high. The EU employment rate of older workers—calculated by dividing the number of persons in employment and aged 55–64 by the total population of the same age group—was 49.5 per cent in 2013 (OECD 2014), whereas the OECD average was 54.9 per cent in the same year. In the USA and Korea, for example, employment rates of workers of 55–64 years old were, respectively, 60.9 per cent and 64.3 per cent in 2013.
LINK
Digitalisation has enabled businesses to access and utilise vast amounts of data. Business data analytics allows companies to employ the most recent and relevant data to comprehend situations and enhance decision-making. While the value of data itself is limited, substantial value can be directly or indirectly uncovered from data. This process is referred to as data monetisation. The most successful stories of data monetisation often originate from large corporations, as they have adequate resources to monetise their data. Notably, many such cases arise from prominent Big Tech companies in North America. In contrast, small and medium-sized enterprises (SMEs) have lagged behind in utilising their digital data assets effectively. They are frequently constrained by limited resources to build up capabilities and fully exploit their data. This places them at a strategic disadvantage, particularly as digitalisation is progressively reshaping markets and competitive relationships. Furthermore, the use of digital technologies and data are important in addressing societal challenges such as energy conservation, circularity, and the ageing of the population. This lag has been highlighted by SMEs we have engaged with, where managing directors have indicated their desire to operate based on data, but their companies lack the know-how and are unsure of ‘where to start’. Together with eight SMEs and other partners, we have defined a research project to gain insight into the potential and obstacles of data monetisation in SMEs. More specifically, we will explore how SMEs can transform data into strategic assets and create value. We attempt to demonstrate the journey of data monetisation and illustrate different possibilities to create value from data in SMEs. We will take a holistic approach to examine different aspects of data monetisation and their associations. The outcomes of this project are both practical and academic, such as an SME handbook, academic papers, and case studies.
The Hanzehogeschool Groningen (HUAS hereafter) is a University of Applied Sciences that is strongly inspired by the challenges of the North Netherlands region and firmly embedded in the city of Groningen in particular. HUAS has a strong track record in education, and practice-based research, and is dedicated to enhancing innovation and entrepreneurship. HUAS currently has 31,000 students Bachelor and Master students in 70 teaching programs. The 3.000 member of staff forming 17 schools and 7 centres of applied research collaborate to offer a cutting-edge teaching-based research. HUAS took the challenge to develop a strong research capacity with 67 professors, and an increasing number of researchers at various levels, supported by dedicated technical and administration support staff. PhD research thesis are co-supervised in collaboration with various universities in the Netherlands and abroad. HUAS positions itself as an Engaged and Versatile university, both in education and research. In line with this, the overall strategic ambitions of HUAS are to develop suitable learning pathways with recognised qualifications; to conduct applied research with a visible impact on education and society; and to be an adaptive, versatile and approachable organisation. HUAS links these strategic ambitions to three strategic research themes: Energy, Healthy Ageing and Entrepreneurship and four societal themes: strengthening a liveable and sustainable North Netherlands; transition to a healthy and active society; digital transformation; and energy transition and circularity. These four challenges define the focus of HUAS education and research.One of the societal themes is explicitly linked to the region: strengthening a liveable and sustainable North Netherlands. North Netherlands is a powerful, enterprising region with the city of Groningen as the healthiest city in the Netherlands. The region is a front runner in the energy transition, has a European exemplary role in the field of active and healthy ageing, and as an agricultural region, has many opportunities for the development of the circular economy and consequently the development of biobased construction material to mitigate climate change. Cooperation with different groups and stakeholders in the region is central in HUAS’s strategy. HUAS is part of extensive local and regional networks, including the University of the North and Akkoord van Groningen. As such, HUAS is well- connected to the research ecosystem in North Netherlands.HUAS has the ambition to better align, connect & develop on a local as well as a regional, national and international levels. Many of the challenges the North is faced with are also relevant in the EU context. Therefore, HUAS is a strong advocate and actor on engaging in European projects. HUAS monitors regularly the EU’s priorities and aligns its research between these priorities and its immediate societal needs. The EU provides a range of funding opportunities that fulfil our ambition as a research and teaching university and responds directly to our challenges from social, energy, and digital transformation. Indeed, over the last decade, HUAS has been successful in European programmes. In the Horizon 2020 programme, HUAS was part of five approved projects. In Horizon Europe so far two projects were granted. HUAS has performed particular well in the EU societal challenge for a secure, clean and efficient energy system. Examples of this are Making City (https://makingcity.eu/) focussing on the developing Positive Energy Districts, and IANOS (https://ianos.eu/) about the decarbonisation of islands. In addition to EU research and innovation schemes, HUAS has a considerable track record in projects funded by the Interreg schemes. In particular, these types of projects have strong links with region, and partners in the region. Currently, EU participation and involvement of HUAS is mainly concentrated in one field: sustainability & energy. In order to further disseminate to other parts of the university, only a well-designed strategy will allow the various research centres to better reach European fundings and satisfy the university’s ambitions. However, so far, no structured mechanism is in place internally to guide the research community and regional stakeholders how to reach European collaboration with confidence. Therefore, this pilot project aims to develop a strategic framework to enhance the participation of all parties at HUAS, including a pilot project that will lead to improvement and validation.
In Europe nearly 10% of the population suffers from diabetes and almost 1% from Rheumatoid Arthritis which can lead to serious problems with mobility and active participation, especially in the ageing population. Pedorthists deliver personalised designed and manufactured orthopaedic footwear or insoles for these patients. However, despite their often laborious efforts upfront, the industry has very little means to quantify how successful the fitting and function of a shoe is. They have to rely on subjective, qualitative measures such as client satisfaction and diminishing of complaints. Although valuable, the need for objective quantitative data in this field is growing. Foot plantar pressure and shear forces are considered major indicators of potential foot problems. Devices to measure plantar pressure slowly gain terrain as providers of objective quantitative data to guide orthotic design and manufacturing. For shear forces however, measuring devices are not yet commercial available. Although shear forces are considered as a major contributor to ulcer formation in diabetic feet, their exact role still requires elucidation and quantification. This project aims to develop a prototype of an in-shoe wearable device that measures both shear forces and pressure using state-of-the-art developments in sensor technologies, smart textiles and wireless data transfer. The collaboration of pedorthists’ small and medium-sized enterprises (SME)’s with medical device engineering companies, knowledge institutes,technical universities and universities of applied sciences in this project will bring together the different fields of expertise required to create an innovative device. It is expected that the tool will be beneficial to improve the quality of pedorthists’ services and potentially reduce health insurance costs. Furthermore, it can be used in new shear forces research and open new business potential. However, the eventual aim is to improve patient care and help maintain personal mobility and participation in society.