Author supplied: The production system described in this paper in an implementation of an agile agent-based production system. This system is designed to meet the requirements of modern production, where short time to market, requirementdriven production and low cost small quantity production are important issues. The production is done on special devices called equiplets. A grid of these equiplets connected by a fast network is capable of producing a variety of different products in parallel. The multi-agent-based software infrastructure is responsible for the agile manufacturing. A product agent is responsible for the production of a single product and equiplet agents will perform the production steps to assemble the product. This paper describes this multiagent-based production system with the focus on the product agent. Presented at EUMAS 2013 ( 11th European Workshop on Multi-Agent Systems) , At Toulouse.
Background: This paper presents the findings of a pilot research survey which assessed the degree of balance between safety and productivity, and its relationship with awareness and communication of human factors and safety rules in the aircraft manufacturing environment.Methods: The study was carried out at two Australian aircraft manufacturing facilities where a Likertscale questionnaire was administered to a representative sample. The research instrument included topics relevant to the safety and human factors training provided to the target workforce. The answers were processed in overall, and against demographic characteristics of the sample population.Results: The workers were sufficiently aware of how human factors and safety rules influence their performance and acknowledged that supervisors had adequately communicated such topics. Safety and productivity seemed equally balanced across the sample. A preference for the former over the latter wasassociated with a higher awareness about human factors and safety rules, but not linked with safety communication. The size of the facility and the length and type of employment were occasionally correlated with responses to some communication and human factors topics and the equilibrium between productivity and safety.Conclusion: Although human factors training had been provided and sufficient bidirectional communication was present across the sample, it seems that quality and complexity factors might have influencedthe effects of those safety related practices on the safety-productivity balance for specific parts of the population studied. Customization of safety training and communication to specific characteristics of employees may be necessary to achieve the desired outcomes.
Our paper investigates the microfoundations of sustainable entrepreneurship and aims to shed light on trade-offs made in decisions about social, ecological and economic sustainability. Balancing the three dimensions of sustainability (social, ecological and economic) inherently requires choices in which one dimension or another has less optimal outcomes. There is not much known about the rationale that sustainable entrepreneurs use for making such trade-offs. Thus, we ask how does entrepreneurial orientation affect decisions and trade-offs on sustainability impact? Our study is an exploratory, qualitative study of 24 sustainable entrepreneurs. We collected data about entrepreneurial orientation and sustainability trade-offs and held in-depth interviews with a subsample of six firms. We conducted a cluster analysis based on four entrepreneurial orientations (innovativeness, proactiveness, riskiness and futurity) and three sustainability trade-off dimensions (environmental, social and economic). From the findings, we derive a typology of three types of sustainable entrepreneurs: green-conflicted, humanitarian-oriented and holistically-oriented. We uncover salient characteristics and aspects of entrepreneurial orientation in relation to trade-off decisions. We find that the entrepreneurs accept slower economic growth or lower performance in order to maintain the integrity of their social and ecological principles and values.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
The textile and clothing sector belongs to the world’s biggest economic activities. Producing textiles is highly energy-, water- and chemical-intensive and consequently the textile industry has a strong impact on environment and is regarded as the second greatest polluter of clean water. The European textile industry has taken significant steps taken in developing sustainable manufacturing processes and materials for example in water treatment and the development of biobased and recycled fibres. However, the large amount of harmful and toxic chemicals necessary, especially the synthetic colourants, i.e. the pigments and dyes used to colour the textile fibres and fabrics remains a serious concern. The limited range of alternative natural colourants that is available often fail the desired intensity and light stability and also are not provided at the affordable cost . The industrial partners and the branch organisations Modint and Contactgroep Textiel are actively searching for sustainable alternatives and have approached Avans to assist in the development of the colourants which led to the project Beauti-Fully Biobased Fibres project proposal. The objective of the Beauti-Fully Biobased Fibres project is to develop sustainable, renewable colourants with improved light fastness and colour intensity for colouration of (biobased) man-made textile fibres Avans University of Applied Science, Zuyd University of Applied Sciences, Wageningen University & Research, Maastricht University and representatives from the textile industry will actively collaborate in the project. Specific approaches have been identified which build on knowledge developed by the knowledge partners in earlier projects. These will now be used for designing sustainable, renewable colourants with the improved quality aspects of light fastness and intensity as required in the textile industry. The selected approaches include refining natural extracts, encapsulation and novel chemical modification of nano-particle surfaces with chromophores.
Synthetic ultra-black (UB) materials, which demonstrate exceptionally high absorbance (>99%) of visible light incident on their surface, are currently used as coatings in photovoltaic cells and numerous other applications. Most commercially available UB coatings are based on an array of carbon nanotubes, which are produced at relatively high temperature and result in numerous by-products. In addition, UB nanotube coatings require harsh application conditions and are very susceptible to abrasion. As a result, these coatings are currently obtained using a manufacturing process with relatively high costs, high energy consumption and low sustainability. Interestingly, an UB coating based on a biologically derived pigment could provide a cheaper and more sustainable alternative. Specifically, GLO Biotics proposes to create UB pigment by taking a bio-mimetic approach and replicate structures found in UB deep-sea fish. A recent study[1] has actually shown that specific fish have melanosomes in their skin with particular dimensions that allow absorption of up to 99.9% of incident light. In addition to this, recent advances in bacterial engineering have demonstrated that it is possible to create bacteria-derived melanin particles with very similar dimensions to the melanosomes in aforementioned fish. During this project, the consortium partners will combine both scientific observations in an attempt to provide the proof-of-concept for developing an ultra-black coating using bacteria-derived melanin particles as bio-based, sustainable pigment. For this, Zuyd University of Applied Sciences (Zuyd) and Maastricht University (UM) collaborate with GLO Biotics in the development of the innovative ‘BLACKTERIA’ UB coating technology. The partners will attempt at engineering an E. coli expression system and adapt its growth in order to produce melanin particles of desired dimensions. In addition, UM will utilize their expertise in industrial coating research to provide input for experimental set-up and the development of a desired UB coating using the bacteria-derived melanin particles as pigment.