The rapidly evolving aviation environment, driven by the Fourth Industrial Revolution, encompasses smart operations, communication technology, and automation. Airports are increasingly developing new autonomous innovation strategies to meet sustainability goals and address future challenges, such as shifting labor markets, working conditions, and digitalization (ACI World, 2019). This paper explores high-level governance strategies, a benchmarking study, that facilitates this transition. It aims to identify the key characteristics and features of the benchmarking study applicable to the development of autonomous airside operations. It also examines areas for improvement in operations, focusing on Key Performance Areas (KPAs) and strategic objectives related to airside automation. The findings highlight several essential performance areas and formulate it to a tailored benchmarking study that airports or aviation stakeholders can adopt to develop automation in airside operations. These criteria and features are summarized into a benchmarking framework that reflects strategy objectives. This paper contributes a valuable benchmarking methodology, supporting the growing global aviation demand for improvements toward more sustainable and smart autonomous airside operations. This outcome motivates aviation stakeholders to innovate to meet environmental and social sustainability goals.
DOCUMENT
BackgroundTackling challenges related to health, environmental sustainability and equity requires many sectors to work together. This “intersectoral co-operation” can pose a challenge on its own. Research commonly focuses on one field or is conducted within one region or country. The aim of this study was to investigate facilitators and barriers regarding intersectoral co-operative behaviour as experienced in twelve distinct case studies in ten European countries. The COM-B behavioural system was applied to investigate which capabilities, opportunities and motivational elements appear necessary for co-operative behaviour.MethodTwelve focus groups were conducted between October 2018 and March 2019, with a total of 76 participants (policymakers, case study coordinators, governmental institutes and/or non-governmental organisations representing citizens or citizens). Focus groups were organised locally and held in the native language using a common protocol and handbook. One central organisation coordinated the focus groups and analysed the results. Translated data were analysed using deductive thematic analysis, applying previous intersectoral co-operation frameworks and the COM-B behavioural system.ResultsAmongst the main facilitators experienced were having highly motivated partners who find common goals and see mutual benefits, with good personal relationships and trust (Motivation). In addition, having supportive environments that provide opportunities to co-operate in terms of support and resources facilitated co-operation (Opportunity), along with motivated co-operation partners who have long-term visions, create good external visibility and who have clear agreements and clarity on roles from early on (Capability). Barriers included not having necessary and/or structural resources or enough time, and negative attitudes from specific stakeholders.ConclusionsThis study on facilitators and barriers to intersectoral co-operation in ten European countries confirms findings of earlier studies. This study also demonstrates that the COM-B model can serve as a relatively simple tool to understand co-operative behaviour in terms of the capability, opportunity and motivation required amongst co-operation partners from different sectors. Results can support co-operators’ and policymakers’ understanding of necessary elements of intersectoral co-operation. It can help them in developing more successful intersectoral co-operation when dealing with challenges of health, environmental sustainability and equity.
DOCUMENT
Recent economic crises, environmental problems and social challenges have urged us to drastically change our consumption and production patterns and transform organisations to contribute to socio-technical transitions that positively impact these challenges. Therefore, sustainable development and the transition towards a circular economy are gaining increased attention from academics and are being widely adopted by national and local governments, companies and other organisations and institutions. Since the implementation of more sustainable solutions lags behind expectations and technological possibilities, scholars and practitioners are increasingly seeing sustainable business model innovation as the key pathway to show the value potential of new sustainable technology and stress the importance of integrating the interests of multiple stakeholders and their economic, environmental and social value goals in the business model’s development. However, there is limited research that elucidates which stakeholders are actively involved, how they interact and what the effect is on the collaborative business modelling process for sustainability. This thesis addresses this research gap by building on the notion of business models as boundary-spanning activity-systems and studies stakeholder interaction from the level of a focal firm, as well as from the level of cross-sector actors collaborating in innovation ecosystems. Through four independent studies, three empirical studies and a design science study, this thesis aims to provide a better understanding of how stakeholder interaction affects collaborative business modelling for sustainability.The first study (Chapter 2) took a process perspective on interaction with network ties from the perspective of a focal firm. Based on two case studies of SMEs successfully introducing sustainable technology in the market, value shaping was identified as the operative mechanism describing the relation between networking and business modelling, from ideation to growth of the business. A stage model with five successive forms of value shaping describes how, in each stage, interaction with network ties help firms to clarify the types of economic, environmental and social value that a sustainable technology can deliver and who possible beneficiaries are. In return, changes in the business model clarify what other network ties are needed, demonstrating how the boundary-spanning function of business models spurs firms to expand and strengthen the value network.The second study (Chapter 3) focused on the commercialisation stage, in which a cognitive change in the manager’s mind was found during the development of a sustainable business model. Based on three empirical cases of business model innovations for sustainability, the study explored how stakeholder interaction may trigger and support managerial cognitive change and hence business model innovation. The findings suggest that the influence of stakeholders on the manager’s understanding of the business runs via three interrelated shaping processes: market approach shaping, product and/or service offering shaping and credibility shaping. In these shaping processes, new or latent stakeholders are found to have a bigger impact than existing ones. A research agenda is presented to further unravel the role of stakeholders affecting managerial cognition around business model innovation for sustainability.The third study (Chapter 4) examined innovation ecosystems’ processes of developing a collaborative business model for sustainability. Based on a study of four sustainably innovative cross-sector collaborations, this chapter studied how innovation ecosystems resolve the tensions that emerge from the collaborating actors’ divergent goals and interests. This study finds that innovation ecosystems engage in a process of valuing value that helps the actors to manage the tensions and find a balance of environmental, social and economic value creation and capture that satisfies all involved actors. The findings reveal that valuing value occurs in two different patterns – collective orchestration and continuous search – that open up a research agenda that can shed further light on the conditions that need to be in place in order for an innovation ecosystem to develop effective sustainable business models. The final study (Chapter 5) used a design science approach, developing a tool for innovation ecosystems’ actors to manage the degree to which stakeholders are involved throughout the process of collaborative business modelling for sustainability. The resulting ‘degree of engagement diagram’ and accompanying stepwise approach makes it possible to identify stakeholders from six cross-sector stakeholder groups that represent economic, social and environmental aspects of sustainable value and visualise their roles. By discriminating between four concentric and permeable circles of engagement, the tool integrates different degrees of involvement of stakeholders and enables users of the DoE diagram to accommodate changes that may occur in the evolving business model and its context. The tool enables innovation ecosystems’ actors to keep the collaboration manageable during the development of a joint and viable sustainable business model. Overall, this thesis extends the understanding of the dynamics of collaborative business modelling for sustainability and the role of stakeholder interaction therein. The research makes three key contributions to the sustainable business model innovation literature. First, it extends the literature by exploring the interplay between stakeholder interaction and business modelling over time. It establishes that stakeholder interaction and business modelling have a reciprocal relationship and contributes with two frameworks – value shaping and valuing value – that explain this reciprocal relationship for firms and innovation ecosystems. Second, the thesis unravels the micro-processes and mechanisms that elucidate how stakeholder interaction actually influences the direction into which the sustainable business model develops. Third, this thesis enriches the scholarly understanding of stakeholder interaction by identifying the main contributors to business model innovation for sustainability, by differentiating between stakeholders and their roles and by providing a tool that accommodates this. The research contributes to practice by offering practitioners useful insights on how they can increase, improve and effectuate stakeholder interaction in order to develop viable business models for sustainability and hence contribute to the desired socio-technical transitions.
DOCUMENT
Teachers have a crucial role in bringing about the extensive social changes that are needed in the building of a sustainable future. In the EduSTA project, we focus on sustainability competences of teachers. We strengthen the European dimension of teacher education via Digital Open Badges as means of performing, acknowledging, documenting, and transferring the competencies as micro-credentials. EduSTA starts by mapping the contextual possibilities and restrictions for transformative learning on sustainability and by operationalising skills. The development of competence-based learning modules and open digital badge-driven pathways will proceed hand in hand and will be realised as learning modules in the partnering Higher Education Institutes and badge applications open for all teachers in Europe.Societal Issue: Teachers’ capabilities to act as active facilitators of change in the ecological transition and to educate citizens and workforce to meet the future challenges is key to a profound transformation in the green transition.Teachers’ sustainability competences have been researched widely, but a gap remains between research and the teachers’ practise. There is a need to operationalise sustainability competences: to describe direct links with everyday tasks, such as curriculum development, pedagogical design, and assessment. This need calls for an urgent operationalisation of educators’ sustainability competences – to support the goals with sustainability actions and to transfer this understanding to their students.Benefit to society: EduSTA builds a community, “Academy of Educators for Sustainable Future”, and creates open digital badge-driven learning pathways for teachers’ sustainability competences supported by multimodal learning modules. The aim is to achieve close cooperation with training schools to actively engage in-service teachers.Our consortium is a catalyst for leading and empowering profound change in the present and for the future to educate teachers ready to meet the challenges and act as active change agents for sustainable future. Emphasizing teachers’ essential role as a part of the green transition also adds to the attractiveness of teachers’ work.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Renewable energy, particularly offshore wind turbines, plays a crucial role in the Netherlands' and EU energy-transition-strategies under the EU Green Deal. The Dutch government aims to establish 75GW offshore wind capacity by 2050. However, the sector faces human and technological challenges, including a shortage of maintenance personnel, limited operational windows due to weather, and complex, costly logistics with minimal error tolerance. Cutting-edge robotic technologies, especially intelligent drones, offer solutions to these challenges. Smaller drones have gained prominence through applications identifying, detecting, or applying tools to various issues. Interest is growing in collaborative drones with high adaptability, safety, and cost-effectiveness. The central practical question from network partners and other stakeholders is: “How can we deploy multiple cooperative drones for maintenance of wind turbines, enhancing productivity and supporting a viable business model for related services?” This is reflected in the main research question: "Which drone technologies need to be developed to enable collaborative maintenance of offshore wind turbines using multiple smaller drones, and how can an innovative business model be established for these services? In collaboration with public and private partners, Saxion, Hanze, and RUG will research the development of these collaborative drones and investigate the technology’s potential. The research follows a Design Science Research methodology, emphasizing solution-oriented applied research, iterative development, and rigorous evaluation. Key technological building blocks to be developed: • Morphing drones, • Intelligent mechatronic tools, • Learning-based adaptive interaction controllers and collaborations. To facilitate the sustainable industrial uptake of the developed technologies, appropriate sustainable business models for these technologies and services will be explored. The project will benefit partners by enhancing their operations and business. It will contribute to renewing higher professional education and may lead to the creation of spin-offs/spinouts which bring this innovative technology to the society, reinforcing the Netherlands' position as a leading knowledge economy.
Centre of Expertise, part of Breda University of Applied Sciences, NHL Stenden Hogeschool, HZ University of Applied Sciences
