De laatste decennia is tijd een strategische concurrentiefactor geworden in de maakindustrie (Demeter, 2013; Godinho Filho et al., 2017a; Gromova, 2020). Naast tijdige levering verwacht de klant ook keuze, maatwerk, hoge kwaliteit en een lage prijs (Siong et al., 2018; Suri, 2020). Om de door de klant gewenste korte doorlooptijd te kunnen realiseren en daarbij ook te voldoen aan zijn andere eisen, zijn flexibiliteit en aanpassingsvermogen essentieel geworden (Godinho Filho et al., 2017b; Siong et al., 2018). Quick Response Manufacturing (QRM) heeft als doel de doorlooptijd te verkorten in productieomgevingen die gekenmerkt worden door een hoge variëteit in producten en maatwerk (Suri, 2020; Siong et al., 2018). QRM kent zijn oorsprong begin jaren negentig van de vorige eeuw (Suri, 2020) en vertoont sterke gelijkenis met lean manufacturing. Het verschil met lean manufacturing is echter dat QRM zich richt op bedrijven in een omgeving met veel productvariatie. Daarnaast heeft QRM nieuwe elementen toegevoegd, zoals Paired-cell Overlapping Loops of Cards with Authorization (POLCA) en Manufacturing Critical Path Time’ (MCT)’ (Godinho Filho et al., 2017b).
Standard mass-production is a well-known manufacturing concept. To make small quantities or even single items of a product according to user specifications at an affordable price, alternative agile production paradigms should be investigated and developed. The system presented in this article is based on a grid of cheap reconfigurable production units, called equiplets. A grid of these equiplets is capable to produce a variety of different products in parallel at an affordable price. The underlying agent-based software for this system is responsible for the agile manufacturing. An important aspect of this type of manufacturing is the transport of the products along the available equiplets. This transport of the products from equiplet to equiplet is quite different from standard production. Every product can have its own unique path along the equiplets. In this article several topologies are discussed and investigated. Also, the planning and scheduling in relation to the transport constraints is subject of this study. Some possibilities of realization are discussed and simulations are used to generate results with the focus on efficiency and usability for different topologies and layouts of the grid and its internal transport system. Closely related with this problem is the scheduling of the production in the grid. A discussion about the maximum achievable load on the production grid and its relation with the transport system is also included.
Standard mass-production is a well-known manufacturing concept. To make small quantities or even single items of a product according to user specifications at an affordable price, alternative agile production paradigms should be investigated and developed. The system presented in this paper is based on a grid of cheap reconfigurable production units, called equiplets. A grid of these equiplets is capable to produce a variety of different products in parallel at an affordable price. The underlying agent-based software for this system is responsible for the agile manufacturing. An important aspect of this type of manufacturing is the transport of the products along the available equiplets. This transport of the products from equiplet to equiplet is quite different from standard production. Every product can have its own unique path along the equiplets. In this paper several topologies are discussed and investigated. Also, the planning and scheduling in relation to the transport constraints is subject of this study. Some possibilities of realization are discussed and simulations are used to generate results with the focus on efficiency and usability for different topologies and layouts of the grid and its internal transport system.