Het ECO-model is ontstaan doordat er in het onderwijs nog geen model bekend was dat de verschillende verbeterinitiatieven op het gebied van decarbonisatie in transport rubriceert en het verbeterpotentieel aangeeft per initiatief. Het geintroduceerde model categoriseert verschillende verbeterinitiatieven volgens het acroniem ECO wat streeft naar een Efficient CO₂-arm Ontwerp van wegtransport. De eerste letter van het acroniem ECO bevat initiatieven aangaande het verhogen van de CO₂-efficiëntie tijdens laden en gebruik. CO₂-arm betreft de keuze voor de energiedrager. Daarom worden elektrisch rijden, biobrandstoffen en E-brandstoffen en verschillende modaliteiten onderzocht op hun verbeterpotentieel. De derde letter van het acroniem ECO, streeft naar een slim ontwerp van het distributienetwerk. Door een slim ontwerp kan de uitstoot per product naar beneden; dat kan door minder kilometers te maken, door aanpassing van het distributienetwerk en het warehouse en ook door laadinfrastructuur neer te zetten op slimme plekken.
High-pressure anaerobic digestion is an appealing concept since it can upgrade biogas directly within the reactor. However, the decline of pH caused by the dissolution of CO2 is the main barrier that prevents a good operating high-pressure anaerobic digestion process. Therefore, in this study, a high-pressure anaerobic digestion was studied to treat high alkalinity synthetic wastewater, which could not be treated in a normal-pressure anaerobic digester. In the high-pressure reactor, the pH value was 7.5 ~ 7.8, and the CH4 content reached 88% at 11 bar. Unlike its normal-pressure counterpart (2285 mg/L acetic acid), the high-pressure reactor ran steadily (without volatile fatty acids inhibition). Furthermore, the microbial community changed in the high-pressure reactor. Specifically, key microbial guilds (Syntrophus (11.2%), Methanosaeta concilii (50.9%), and Methanobrevibacter (26.8%)) were dominant in the high-pressure reactor at 11 bar, indicating their fundamental roles under high-pressure treating high alkalinity synthetic wastewater.
Niet de intelligente technologie als kunstmatige intelligente, maar de manier waarop mensen deze technologie inzetten levert een verantwoorde toepassing op. Op dit moment wordt innovatie op het gebied van data, algoritme en computerkracht nog niet maximaal benut. Met enig sociaal onbenul, of met gebrek aan inbedding via wetgeving, kunnen ondenkbare scenario’s werkelijkheid worden. We verkennen er hier een aantal waarbij technologie op een verrassende manier wordt ingezet. Daarbij zijn voorbeelden van hyperpersonalisering van adviezen, het recht op ongezien zijn en preventieve handhaving, en voorbeelden waar digitale representaties toe kunnen leiden. Van hieruit kunnen we de discussie starten hoe we als samenleving technologie willen duiden en inzetten. Hoe kunnen we van gebruiker van slimme systemen komen tot een rol als opdrachtgever van ondersteunende technologie?
De wereldwijde fosforchemische industrie is sterk afhankelijk van witte fosfor (P4) dat wordt geproduceerd uit gemijnd fosfaaterts (Ca5(PO4)3F), een eindige en schaarse fossiele grondstof. De omzetting van P4 in een scala aan producten is op dit moment ook niet duurzaam, maar energie-intensief en inefficiënt, terwijl deze organofosforverbindingen een prominente rol spelen in de moderne wetenschap en samenleving vanwege hun brede toepassingen. De reductie van anorganisch fosfaat (oxidatietoestand +5) naar P4 (ox. toestand 0) brengt deze inefficienties met zich mee, aangezien veel hoogwaardige vervolgproducten zich in de +3 of +5 formele oxidatietoestand bevinden. In dit KIEM GoChem project zullen onderzoekers van de Universiteit van Amsterdam in samenwerking met MKB SusPhos b.v. nieuwe synthetische methodologieën ontwikkelen die onnodige redoxcycli in de fosforchemie voorkomen en daarnaast gebruikmaken van afvalstromen als startmateriaal. Het project is relevant voor de Nationale Wetenschapsagenda “Circulaire economie en grondstoffenefficiëntie” en heeft als doel om de duurzaamheid van de fosforchemische industrie te verbeteren, waarbij fosfaatafval als grondstof gebruikt wordt en het gebruik van witte fosfor (P4) geheel wordt omzeild. SusPhos b.v. maakt gebruik van een onuitputtelijke hernieuwbare grondstof, met name fosfaten teruggewonnen uit afvalwater in de vorm van struviet (magnesium ammoniumfosfaat) om duurzame fosfaathoudende meststoffen en brandverstragers te produceren, en bouwt dit jaar een proeffabriek om deze techniek op te schalen. In dit nieuwe GoChem project richten SusPhos b.v. en de UvA zich op de ontwikkeling van een nieuw protocol voor de omzetting van struviet naar hoogwaardigere fosfaatesters, waarmee in potentie een nieuw portfolio aan gerecycleerde producten op de markt gezet kan worden dat kan concurreren met de huidige producten en als zodanig een belangrijke bijdrage levert aan de totstandkoming van een circulaire economie. De directe, redoxneutrale omzetting van hernieuwbare anorganische fosfaten in belangrijke organofosfaatproducten is een kans waarmee onnodige verspilling van meet af aan wordt geëlimineerd.