Abstract The emergence of new technologies such as mp3 and music streaming, and the accompanying digital transformation of the music industry, have led to the shift and change of the entire music industry’s value chain. While music is increasingly being consumed through digital channels, the number of empirical studies, particularly in the field of music copyright in the digital music industry, is limited. Every year, rightsholders of musical works, valued 2.5 billion dollars, remain unknown. The objectives of this study are twofold: First to understand and describe the structure and process of the Dutch music copyright system including the most relevant actors within the system and their relations. Second to apply evolutionary economics approach and Values Sensitive Design method within the context of music copyright through positive-empirical perspective. For studies of technological change in existing markets, the evolutionary economics literature provides a coherent and evidence-based foundation. The actors are generally perceived as being different, for example with regard to their access to information, their ability to handle information, their capital and knowledge base (asymmetric information). Also their norms, values and roles can differ. Based on an analysis of documents and held expert interviews, we find that the collection and distribution of the music copyright money is still based on obsolete laws, neoclassical paradigm and legacy IT-system. Finally, we conclude that the rightsholders are heterogenous and have asymmetrical information and negotiating power. The outcomes of this study contribute to create a better understanding of impact of digitization of music copyright industry and empower the stakeholders to proceed from a more informed perspective on redesigning and applying the future music copyright system and pre-digital norms and values amongst actors.
Electromagnetic articulography (EMA) is one of the instrumental phonetic research methods used for recording and assessing articulatory movements. Usually, articulographic data are analysed together with standard audio recordings. This paper, however, demonstrates how coupling the articulograph with devices providing other types of information may be used in more advanced speech research. A novel measurement system is presented that consists of the AG 500 electromagnetic articulograph, a 16-channel microphone array with a dedicated audio recorder and a video module consisting of 3 high-speed cameras. It is argued that synchronization of all these devices allows for comparative analyses of results obtained with the three components. To complement the description of the system, the article presents innovative data analysis techniques developed by the authors as well as preliminary results of the system’s accuracy.
This paper presents a Decision Support System (DSS) that helps companies with corporate reputation (CR) estimates of their respective brands by collecting provided feedbacks on their products and services and deriving state-of-the-art key performance indicators. A Sentiment Analysis Engine (SAE) is at the core of the proposed DSS that enables to monitor, estimate, and classify clients’ sentiments in terms of polarity, as expressed in public comments on social media (SM) company channels. The SAE is built on machine learning (ML) text classification models that are cross-source trained and validated with real data streams from a platform like Trustpilot that specializes in user reviews and tested on unseen comments gathered from a collection of public company pages and channels on a social networking platform like Facebook. Such crosssource opinion analysis remains a challenge and is highly relevant in the disciplines of research and engineering in which a sentiment classifier for an unlabeled destination domain is assisted by a tagged source task (Singh and Jaiswal, 2022). The best performance in terms of F1 score was obtained with a multinomial naive Bayes model: 0,87 for validation and 0,74 for testing.
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
National forestry Commission (SBB) and National Park De Biesbosch. Subcontractor through NRITNational parks with large flows of visitors have to manage these flows carefully. Methods of data collection and analysis can be of help to support decision making. The case of the Biesbosch National Park is used to find innovative ways to figure flows of yachts, being the most important component of water traffic, and to create a model that allows the estimation of changes in yachting patterns resulting from policy measures. Recent policies oriented at building additional waterways, nature development areas and recreational concentrations in the park to manage the demands of recreation and nature conservation offer a good opportunity to apply this model. With a geographical information system (GIS), data obtained from aerial photographs and satellite images can be analyzed. The method of space syntax is used to determine and visualize characteristics of the network of leisure routes in the park and to evaluate impacts resulting from expected changes in the network that accompany the restructuring of waterways.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.