The past two years I have conducted an extensive literature and tool review to answer the question: “What should software engineers learn about building production-ready machine learning systems?”. During my research I noted that because the discipline of building production-ready machine learning systems is so new, it is not so easy to get the terminology straight. People write about it from different perspectives and backgrounds and have not yet found each other to join forces. At the same time the field is moving fast and far from mature. My focus on material that is ready to be used with our bachelor level students (applied software engineers, profession-oriented education), helped me to consolidate everything I have found into a body of knowledge for building production-ready machine learning (ML) systems. In this post I will first define the discipline and introduce the terminology for AI engineering and MLOps.
LINK
The evolution of emerging technologies that use Radio Frequency Electromagnetic Field (RF-EMF) has increased the interest of the scientific community and society regarding the possible adverse effects on human health and the environment. This article provides NextGEM’s vision to assure safety for EU citizens when employing existing and future EMF-based telecommunication technologies. This is accomplished by generating relevant knowledge that ascertains appropriate prevention and control/actuation actions regarding RF-EMF exposure in residential, public, and occupational settings. Fulfilling this vision, NextGEM commits to the need for a healthy living and working environment under safe RF-EMF exposure conditions that can be trusted by people and be in line with the regulations and laws developed by public authorities. NextGEM provides a framework for generating health-relevant scientific knowledge and data on new scenarios of exposure to RF-EMF in multiple frequency bands and developing and validating tools for evidence-based risk assessment. Finally, NextGEM’s Innovation and Knowledge Hub (NIKH) will offer a standardized way for European regulatory authorities and the scientific community to store and assess project outcomes and provide access to findable, accessible, interoperable, and reusable (FAIR) data.
DOCUMENT
Background: Everyday exposure to radiofrequency electromagnetic fields (RF-EMF) emitted from wireless devices such as mobile phones and base stations, radio and television transmitters is ubiquitous. Some people attribute non-specific physical symptoms (NSPS) such as headache and fatigue to exposure to RF-EMF. Most previous laboratory studies or studies that analyzed populations at a group level did not find evidence of an association between RF-EMF exposure and NSPS. Objectives: We explored the association between exposure to RF-EMF in daily life and the occurrence of NSPS in individual self-declared electro hypersensitive persons using body worn exposimeters and electronic diaries. Methods: We selected seven individuals who attributed their NSPS to RF-EMF exposure. The level of and variability in personal RF-EMF exposure and NSPS were determined during a three-week period. Data were analyzed using timeseries analysis in which exposure as measured and recorded in the diary was correlated with NSPS. Results: We found statistically significant correlations between perceived and actual exposure to wireless internet (WiFi - rate of change and number of peaks above threshold) and base stations for mobile telecommunications (GSM+UMTS downlink, rate of change) and NSPS scores in four of the seven participants. In two persons a higher EMF exposure was associated with higher symptom scores, and in two other persons it was associated with lower scores. Remarkably, we found no significant correlations between NSPS and timeweighted average power density, the most commonly used exposure metric. Conclusions: RF-EMFexposure was associated either positively or negatively with NSP Sinsome but not all of the selected self-declared electro hypersensitive persons. https://doi.org/10.1016/j.envint.2018.08.064
MULTIFILE