Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates whether and how out-of-school science activities contribute to the elicitation, emergence, and development of pupils’ science talent. The context of this thesis is the Northern Netherlands Science Network, an alliance of primary schools, out-of-school science facilities, the university of Groningen, and the Hanze University of Applied Sciences (www.wknn.nl). Interviews with the schools on their starting position showed that adequate communication between schools and out-of-school facilities is necessary to coordinate the participants’ educational goals. Secondly, the elicitation and expression of science talent was studied in the micro-interactions between pupils and their educator (classroom teacher or facility instructor). To do so, a multivariate coding scheme was developed to measure Pedagogical Content Knowledge expressed in real-time interaction (EPCK). The interaction shows a variable pattern over time. Sometimes episodes of high-level EPCK — so-called talent moments — emerge, in which talented pupil behavior in the form of pupils’ conceptual understanding, and talent elicitation by the educator in the form of open teaching focused on conceptual understanding, determine one another. These talent moments only occur in activities that were prepared in the classroom and with educators who were trained to evoke conceptual understanding. Under these conditions, out of school science activities can contribute to the elicitation and development of science talent in primary school pupils.AB - Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates whether and how out-of-school science activities contribute to the elicitation, emergence, and development of pupils’ science talent. The context of this thesis is the Northern Netherlands Science Network, an alliance of primary schools, out-of-school science facilities, the university of Groningen, and the Hanze University of Applied Sciences (www.wknn.nl). Interviews with the schools on their starting position showed that adequate communication between schools and out-of-school facilities is necessary to coordinate the participants’ educational goals. Secondly, the elicitation and expression of science talent was studied in the micro-interactions between pupils and their educator (classroom teacher or facility instructor). To do so, a multivariate coding scheme was developed to measure Pedagogical Content Knowledge expressed in real-time interaction (EPCK). The interaction shows a variable pattern over time. Sometimes episodes of high-level EPCK — so-called talent moments — emerge, in which talented pupil behavior in the form of pupils’ conceptual understanding, and talent elicitation by the educator in the form of open teaching focused on conceptual understanding, determine one another. These talent moments only occur in activities that were prepared in the classroom and with educators who were trained to evoke conceptual understanding. Under these conditions, out of school science activities can contribute to the elicitation and development of science talent in primary school pupils.
LINK
Medium-sized cities across Europe are increasingly and actively attracting skilled migrants. How can these cities best manage the challenges of internationalisation? That is to say: How can they attract, facilitate and integrate skilled migrants, enabling them to contribute to the regional culture and economy, while still serving their local populations and maintaining social cohesion?In this volume, we combine academic findings with policy reflections to provide a uniquely interdisciplinary guide for academics, policy makers and professionals in local governments, universities, HRM departments, for successfully co-ordinated international talent management.
DOCUMENT
This study investigated the added value, i.e. discriminative and concurrent validity and reproducibility, of an eye-hand coordination test relevant to table tennis as part of talent identification. Forty-three table tennis players (7–12 years) from national (n = 13), regional (n = 11) and local training centres (n = 19) participated. During the eye-hand coordination test, children needed to throw a ball against a vertical positioned table tennis table with one hand and to catch the ball correctly with the other hand as frequently as possible in 30 seconds. Four different test versions were assessed varying the distance to the table (1 or 2 meter) and using a tennis or table tennis ball. ‘Within session’ reproducibility was estimated for the two attempts of the initial tests and ten youngsters were retested after 4 weeks to estimate ‘between sessions’ reproducibility. Validity analyses using age as covariate showed that players from the national and regional centres scored significantly higher than players from the local centre in all test versions (p<0.05). The tests at 1 meter demonstrated better discriminative ability than those at 2 meter. While all tests but one had a positive significant association with competition outcome, which were corrected for age influences, the version with a table tennis ball at 1 meter showed the highest association (r = 0.54; p = 0.001). Differences between the first and second attempts were comparable for all test versions (between −8 and +7 repetitions) with ICC 's ranging from 0.72 to 0.87. The smallest differences were found for the test with a table tennis ball at 1 meter (between −3 and +3 repetitions). Best test version as part of talent identification appears to be the version with a table tennis ball at 1 meter regarding the psychometric characteristics evaluated. Longitudinal studies are necessary to evaluate the predictive value of this test.
MULTIFILE
The aim of the present study was to investigate if the presence of anterior cruciate ligament (ACL) injury risk factors depicted in the laboratory would reflect at-risk patterns in football-specific field data. Twenty-four female footballers (14.9 ± 0.9 year) performed unanticipated cutting maneuvers in a laboratory setting and on the football pitch during football-specific exercises (F-EX) and games (F-GAME). Knee joint moments were collected in the laboratory and grouped using hierarchical agglomerative clustering. The clusters were used to investigate the kinematics collected on field through wearable sensors. Three clusters emerged: Cluster 1 presented the lowest knee moments; Cluster 2 presented high knee extension but low knee abduction and rotation moments; Cluster 3 presented the highest knee abduction, extension, and external rotation moments. In F-EX, greater knee abduction angles were found in Cluster 2 and 3 compared to Cluster 1 (p = 0.007). Cluster 2 showed the lowest knee and hip flexion angles (p < 0.013). Cluster 3 showed the greatest hip external rotation angles (p = 0.006). In F-GAME, Cluster 3 presented the greatest knee external rotation and lowest knee flexion angles (p = 0.003). Clinically relevant differences towards ACL injury identified in the laboratory reflected at-risk patterns only in part when cutting on the field: in the field, low-risk players exhibited similar kinematic patterns as the high-risk players. Therefore, in-lab injury risk screening may lack ecological validity.
DOCUMENT
The aim of the present study was to investigate if the presence of anterior cruciate ligament (ACL) injury risk factors depicted in the laboratory would reflect at-risk patterns in football-specific field data. Twenty-four female footballers (14.9 ± 0.9 year) performed unanticipated cutting maneuvers in a laboratory setting and on the football pitch during football-specific exercises (F-EX) and games (F-GAME). Knee joint moments were collected in the laboratory and grouped using hierarchical agglomerative clustering. The clusters were used to investigate the kinematics collected on field through wearable sensors. Three clusters emerged: Cluster 1 presented the lowest knee moments; Cluster 2 presented high knee extension but low knee abduction and rotation moments; Cluster 3 presented the highest knee abduction, extension, and external rotation moments. In F-EX, greater knee abduction angles were found in Cluster 2 and 3 compared to Cluster 1 (p = 0.007). Cluster 2 showed the lowest knee and hip flexion angles (p < 0.013). Cluster 3 showed the greatest hip external rotation angles (p = 0.006). In F-GAME, Cluster 3 presented the greatest knee external rotation and lowest knee flexion angles (p = 0.003). Clinically relevant differences towards ACL injury identified in the laboratory reflected at-risk patterns only in part when cutting on the field: in the field, low-risk players exhibited similar kinematic patterns as the high-risk players. Therefore, in-lab injury risk screening may lack ecological validity.
MULTIFILE
This paper aims to offer a critical reflection on the way Talent Management (TM) is investigated in practice, by addressing the key issues regarding the quality (in terms of rigor and relevance) of academic empirical TM research and therefore the critical scrutiny of TM scholars’ work. We will argue that despite the growth in the quantity, the quality of many empirical TM papers is lagging behind and hindering the progress of the academic field of TM.
DOCUMENT
The work book 'Curious Minds Muziekeducatie' is aimed at Dutch primary school teachers. The book is used by teachers who participate in a coaching trajectory based on Video Interaction Coaching. The trajectory is part of PhD research into the effects of coaching teachers in music lessons aimed at creativity development in primary school students. Children love to explore in music settings and by nature have curious minds. Via video coaching, school teachers can further develop their pedagogical and didactical skills to enhance the creative music talent of their students. They can learn to observe and recognise the talented behaviour their students show in music lessons and learn to respond to it appropriately. Furthermore they can learn to elicit these special and teacheable moments. These moments can be described as moments in which the interaction between the teacher and the students is on an optimal level and students are involved in the situated construction of musical knowledge and insight.The coaching is part of PhD research within the department of Developmental Psychology of University of Groningen, and of the research programme of the research group Art Education of Hanze University of Applied Sciences, Groningen. The research is also linked to the Curious Minds research programme of the School of Education of Hanze University of Applied Sciences.
DOCUMENT
Introduction: Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. Material and methods: 13 males and 16 females performed cuts at different angles (45 , 90 , 135 and 180 ) at maximum speed. 3D kinematics and kinetics were collected. To determine differences across cutting angles (45 , 90 , 135 and 180 ) and sex (female, male), a 4 2 repeated measures ANOVA was conducted followed by post hoc comparisons (Bonferroni) with alpha level set at a 0.05 a priori. Results: At all cutting angles, males showed greater knee flexion angles than females (p < 0.01). Also, where males performed all cutting angles with no differences in the amount of knee flexion 42.53 ± 8.95 , females decreased their knee flexion angle from 40.6 ± 7.2 when cutting at 45 to 36.81 ± 9.10 when cutting at 90 , 135 and 180 (p < 0.01). Knee flexion moment decreased for both sexes when cutting towards sharper angles (p < 0.05). At 90 , 135 and 180 , males showed greater knee valgus moments than females. For both sexes, knee valgus moment increased towards the sharper cut- ting angles and then stabilized compared to the 45 cutting angle (p < 0.01). Both females and males showed smaller vGRF when cutting to sharper angles (p < 0.01). Conclusion: It can be concluded that different cutting angles demand different knee kinematics and kinet- ics. Sharper cutting angles place the knee more at risk. However, females and males handle this differ- ently, which has implications for injury prevention.
DOCUMENT