At a time when the population is ageing and most people choose to live in their own home for as long as possible, it is important to consider various aspects of supportive and comfortable environments for housing. This study, conducted in South Australia, aims to provide information about the links between the type of housing in which older people live, the weather and occupants’ heating and cooling behaviours as well as their health and well-being. The study used a Computer-Assisted Telephone Interviewing (CATI) system to survey 250 people aged 65 years and over who lived in their own home. The respondents were recruited from three regions representing the three climate zones in South Australia: semi-arid, warm temperate and temperate. The results show that while the majority of respondents reported being in good health, many lived in dwellings with minimal shading and no wall insulation and appeared to rely on the use of heaters and coolers to achieve thermally comfortable conditions. Concerns over the cost of heating and cooling were shared among the majority of respondents and particularly among people with low incomes. Findings from this study highlight the importance of providing information to older people, carers, designers and policy makers about the interrelationships between weather, housing design, heating and cooling behaviours, thermal comfort, energy use and health and well-being, in order to support older people to age in place independently and healthily. https://doi.org/10.1016/j.buildenv.2019.03.023 LinkedIn: https://www.linkedin.com/in/jvhoof1980/
MULTIFILE
Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.
DOCUMENT