In face of climate change and urbanization, the need for thermally comfortable outdoor urban spaces is increasing. In the design of the thermally comfortable urban spaces and decision making about interventions that enhance thermal comfort, scientists and professionals that work for cities use meteorological measurements and models. These measurements can be done by professional and accurate meteorological sensors, but also by simpler mobile instruments such as the easy-to-use Kestrel weather meters. In using these simple type of sensors, it is important to know what the performance of these sensors is for outdoor thermal comfort assessments and how they can be used by scientists and professionals in decision making about urban designs that enhance thermal comfort.To answer these questions, we carried out three experiments in the summer of 2020 in Amsterdam, in which we tested the 11 Kestrel 5400 heat stress sensors and assessed the performance of this equipment for thermal comfort studies. We concluded that Kestrel sensors can be used very well for assessing differences in air temperature and PET (Physiological Equivalent Temperature) between outdoor built environments. For both air temperature and PET, the RMSE between the 11 Kestrel sensors was 0.5 °C maximum when measuring the same conditions. However, Kestrel sensors that were placed in the sun without a wind vane mounted to the equipment showed large radiation errors. In this case, temperature differences up to 3.4 °C were observed compared to Kestrels that were shaded. The effect of a higher air temperature on the PET calculation is, however, surprisingly small. A sensitivity analysis showed that an increase of 3 °C in the air temperature results in a maximal PET reduction of 0.5 °C. We concluded that Kestrel sensors can very well be used for assessing differences between air temperatures and PET between two locations and assessing the thermal effects of urban designs, but care should be taken when air temperature measurements are carried out in the sun. We always recommend using the wind vanes to deviate from high radiant input orientations for the temperature sensor, and placing the stations next to each other at the beginning and at the end of the measurements to check whether the stations actually measure the same values. Any differences can be corrected afterwards.
Semi-closed greenhouses have been developed in which window ventilation is minimized due to active cooling, enabling enhanced CO2 concentrations at high irradiance. Cooled and dehumidified air is blown into the greenhouse from below or above the canopy. Cooling below the canopy may induce vertical temperature gradients along the length of the plants. Our first aim was to analyze the effect of the positioning of the inlet of cooled and dehumidified air on the magnitudes of vertical temperature and VPD gradients in the semi-closed greenhouses. The second aim was to investigate the effects of vertical temperature gradients on assimilate production, partitioning, and fruit growth. Tomato crops were grown year-round in four semiclosed greenhouses with cooled and dehumidified air blown into the greenhouses from below or above the crop. Cooling below the canopy induced vertical temperature and VPD gradients. The temperature at the top of the canopy was over 5°C higher than at the bottom, when outside solar radiation was high (solar radiation >250 J cm-2 h-1). Total dry matter production was not affected by the location of the cooling (4.64 and 4.80 kg m-2 with cooling from above and from below, respectively). Percentage dry matter partitioning to the fruits was 74% in both treatments. Average over the whole growing season the fresh fruit weight of the harvested fruits was not affected by the location of cooling (118 vs 112 g fruit-1). However, during summer period the average fresh fruit weight of the harvested fruits in the greenhouse with cooling from below was higher than in the greenhouse with cooling from above (124 vs 115 g fruit-1).
A world where technology is ubiquitous and embedded in our daily lives is becoming increasingly likely. To prepare our students to live and work in such a future, we propose to turn Saxion’s Epy-Drost building into a living lab environment. This will entail setting up and drafting the proper infrastructure and agreements to collect people’s location and building data (e.g. temperature, humidity) in Epy-Drost, and making the data appropriately available to student and research projects within Saxion. With regards to this project’s effect on education, we envision the proposal of several derived student projects which will provide students the opportunity to work with huge amounts of data and state-of-the-art natural interaction interfaces. Through these projects, students will acquire skills and knowledge that are necessary in the current and future labor-market, as well as get experience in working with topics of great importance now and in the near future. This is not only aligned with the Creative Media and Game Technologies (CMGT) study program’s new vision and focus on interactive technology, but also with many other education programs within Saxion. In terms of research, the candidate Postdoc will study if and how the data, together with the building’s infrastructure, can be leveraged to promote healthy behavior through playful strategies. In other words, whether we can persuade people in the building to be more physically active and engage more in social interactions through data-based gamification and building actuation. This fits very well with the Ambient Intelligence (AmI) research group’s agenda in Augmented Interaction, and CMGT’s User Experience line. Overall, this project will help spark and solidify lasting collaboration links between AmI and CMGT, give body to AmI’s new Augmented Interaction line, and increase Saxion’s level of education through the dissemination of knowledge between researchers, teachers and students.
MSEs have encountered limitations while pushing the limits of catheter tip sensors performance. The limitations summarized: - sensors are not immune to electrical signal noise, cross talk, and EM fields; - sensors are not immune to high magnetic fields, i.e. not suitable for MR imaging; - extending the amount of sensors on the catheter tip is limited due to cluttering of wires. A fundamentally different approach using integrated optics is chosen for developing a new generation catheter sensors. The complexity of the design and production problems represents a knowledge gap, that can be bridged in the proposed consortium. This project consists of four work packages, total duration two years, subdivided into four phases. A crucial deliverable of the project is presented at the end of phase IV (WP4), namely a demonstrator integrating pressure and temperature sensors (obtained from WP1) with a newly designed readout system. This system is modularly extendable for future catheter tip sensors. In WP1, pressure- and temperature sensors are developed using two design approaches. In WP2 the influence of downscaling an ultrasound MZI device is explored and the microfabrication process parameters are studied. An additional goal of WP2 is to find the most suitable method for measuring lactate concentration. Among the deliverables five manuscripts: manuscript 1 includes simulations and measurements of the developed pressure and temperature sensors, manuscript 2 answers the question: can a grated fiber be used for measuring pressure and temperature on a tip? Manuscript 3 answers the question: which method is most suitable for measuring lactate concentration on a tip? Manuscript 4 answers the question: does a US intensity detector fit on a catheter tip while obeying the LoR? Manuscript 5 describes the performance of the demonstrator (Phase IV), i.e. integration of T/P sensing with a modular read out system.
The application of sensors in water technology is a crucial step to provide broader, more efficient and circular systems. Among the different technologies used in this field, ultrasound-based systems are widely used, basically to generate energy peaks for cell lysis and particle separation. In this work, we propose the adaptation of an ultrasound system to monitor the concentration of solid particles in wastewater treatment plants settlers as well as to indicate sludge level (real time). A similar sensor was developed and tested in another project which operated successfully at solids concentration up to 1% in UASB reactors. Such measurements are nowadays obtained via time-consuming physical (solids) analysis, which can compromise the efficiency of the settlers and the quality of the effluent. The present project proposes an improved version of the sensor, which will combine solids concentration monitoring and sludge level detection. The defined targets have the intention to make a sensor with a much broader range of applications, been suitable not only for UASB reactors but also to settler and aerobic tanks. The project is a cooperation between the Water Technology lectoraat of NHL Stenden University of Applied Sciences, two SME’s - YNOVIO B.V. and Lamp-ion B.V. - and the INCT group (Brazil). If proven feasible, the concept can generate a big business market to the involved Dutch partners as well as favor the automation of WWTP in the Netherlands, Brazil and around the world.