Cities are confronted with more frequent heatwaves of increasing intensity discouraging people from using urban open spaces that are part of their daily lives. Climate proofing cities is an incremental process that should begin where it is needed using the most cost-efficient solutions to mitigate heat stress. However, for this to be achieved the factors that influence the thermal comfort of users, such as the layout of local spaces, their function and the way people use them needs to be identified first. There is currently little evidence available on the effectiveness of heat stress interventions in different types of urban space.The Cool Towns Heat Stress Measurement Protocol provides basic guidance to enable a full Thermal Comfort Assessment (TCA) to be conducted at street-level. Those involved in implementing climate adaptation strategies in urban areas, such as in redevelopments will find practical support to identify places where heat stress may be an issue and suggestions for effective mitigation measures. For others, such as project developers, and spatial designers such as landscape architects and urban planners it provides practical instructions on how to evaluate and provide evidence-based justification for the selection of different cooling interventions for example trees, water features, and shade sails, for climate proofing urban areas.
MULTIFILE
Urban planning will benefit from tools that can assess the vulnerabilityto thermal stress in urban dense cities. Detailed quick-scan heat stressmaps, as made in this study for Johannesburg, have proven valuable inthe decision-making process on this topic. It raised awareness on theurgent need to implement measures to tackle the effects of climatechange and urbanization. Awareness on heat stress has led to theimplementation of measures to mitigate the effects of climate change.As in other countries, nature-based solutions (e.g. green roofs and walls,swales, rain gardens, planting trees etc) are considered in urban areasin South Africa for various reasons. The awareness of the effect ofnature based solutions on heat stress is still low, which can be improvedby the use of heat stress maps. Some of these measures are alreadymapped on the open source web tool, Climate-scan(www.climatescan.nl) for international knowledge exchange aroundthe globe.
DOCUMENT
An important consideration for future age-friendly cities is that older people are able to live in housing appropriate for their needs. While thermal comfort in the home is vital for the health and well-being of older people, there are currently few guidelines about how to achieve this. This study is part of a research project that aims to improve the thermal environment of housing for older Australians by investigating the thermal comfort of older people living independently in South Australia and developing thermal comfort guidelines for people ageing-in-place. This paper describes the approach fundamental for developing the guidelines, using data from the study participants’ and the concept of personas to develop a number of discrete “thermal personalities”. Hierarchical Cluster Analysis (HCA) was implemented to analyse the features of research participants, resulting in six distinct clusters. Quantitative and qualitative data from earlier stages of the project were then used to develop the thermal personalities of each cluster. The thermal personalities represent dierent approaches to achieving thermal comfort, taking into account a wide range of factors including personal characteristics, ideas, beliefs and knowledge, house type, and location. Basing the guidelines on thermal personalities highlights the heterogeneity of older people and the context-dependent nature of thermal comfort in the home and will make the guidelines more user-friendly and useful. Original publication at MDPI: https://doi.org/10.3390/ijerph17228402 © 2020 by the authors. Licensee MDPI.
MULTIFILE