DOCUMENT
The purpose is to give an overview of the extent, range and nature of existing definitions of the concept ‘ageing in place’. Providing such an overview may be helpful, for policy makers, researchers, communities and service providers, to make sense of the versatility and uses of the concept, and allow the improvement and increase the success of efforts to contribute to the quality of life of older people. The overview was created using Arksey and O’Malley’s scoping review methodology. Out of 3,692 retrieved articles, 34 met the inclusion criteria. These studies concentrate on the following five key themes concerning ‘ageing in place’: ‘ageing in place’ in relation to place, to social networks, to support, to technology and to personal characteristics. Each of these key themes consists of other aspects, like physical place and attachment to place for the keyword place. This study concludes that the concept ‘ageing in place’ is broad and can be viewed from different (i.e. five) key themes. A more thorough understanding of ‘ageing in place’ provides knowledge about the existing key themes and aspects. These findings might provide practical support for professionals and governments when they develop their policies about ‘ageing in place’ integrally and to develop fit policies.
DOCUMENT
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Collaborative networks for sustainability are emerging rapidly to address urgent societal challenges. By bringing together organizations with different knowledge bases, resources and capabilities, collaborative networks enhance information exchange, knowledge sharing and learning opportunities to address these complex problems that cannot be solved by organizations individually. Nowhere is this more apparent than in the apparel sector, where examples of collaborative networks for sustainability are plenty, for example Sustainable Apparel Coalition, Zero Discharge Hazardous Chemicals, and the Fair Wear Foundation. Companies like C&A and H&M but also smaller players join these networks to take their social responsibility. Collaborative networks are unlike traditional forms of organizations; they are loosely structured collectives of different, often competing organizations, with dynamic membership and usually lack legal status. However, they do not emerge or organize on their own; they need network orchestrators who manage the network in terms of activities and participants. But network orchestrators face many challenges. They have to balance the interests of diverse companies and deal with tensions that often arise between them, like sharing their innovative knowledge. Orchestrators also have to “sell” the value of the network to potential new participants, who make decisions about which networks to join based on the benefits they expect to get from participating. Network orchestrators often do not know the best way to maintain engagement, commitment and enthusiasm or how to ensure knowledge and resource sharing, especially when competitors are involved. Furthermore, collaborative networks receive funding from grants or subsidies, creating financial uncertainty about its continuity. Raising financing from the private sector is difficult and network orchestrators compete more and more for resources. When networks dissolve or dysfunction (due to a lack of value creation and capture for participants, a lack of financing or a non-functioning business model), the collective value that has been created and accrued over time may be lost. This is problematic given that industrial transformations towards sustainability take many years and durable organizational forms are required to ensure ongoing support for this change. Network orchestration is a new profession. There are no guidelines, handbooks or good practices for how to perform this role, nor is there professional education or a professional association that represents network orchestrators. This is urgently needed as network orchestrators struggle with their role in governing networks so that they create and capture value for participants and ultimately ensure better network performance and survival. This project aims to foster the professionalization of the network orchestrator role by: (a) generating knowledge, developing and testing collaborative network governance models, facilitation tools and collaborative business modeling tools to enable network orchestrators to improve the performance of collaborative networks in terms of collective value creation (network level) and private value capture (network participant level) (b) organizing platform activities for network orchestrators to exchange ideas, best practices and learn from each other, thereby facilitating the formation of a professional identity, standards and community of network orchestrators.
Within the film and theater world, special effects make-up is used to adapt the appearance of actors for visual storytelling. Currently the creation of special effects makeup is a time-consuming process which creates a lot of waste that doesn’t fit in with the goals of a sustainable industry. Combine with the trend of the digitization of the movie and theater industry which require faster and more iterative workflows, the current ways of creating special effects makeup requires changing. Within this project we would like to explore if the traditional way of working can be converted to a digital production process. Our research consists of three parts. Firstly, we would like to explore if a mobile face scanning rig can be used to create digital copies of actors, and such eliminate the need to creates molds. Secondly, we would like to see if digital sculpting can replace the traditional methods of sculpting molds, casts and prosthetics. Here we would like to compare both methods in terms of creativity and time consumption. The third part of our project will be to explore the use of 3D printing for the creation of molds and prosthetics.